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ABSTRACT

The brain exhibits complex intrinsic dynamics, i.e., spontaneously arising activity patterns without any external inputs or tasks. Such intrinsic dynamics and their
alteration are thought to play crucial roles in typical as well as atypical cognitive functioning. Linking the ever-changing intrinsic dynamics to the rather static
anatomy is a challenging endeavor. Dynamical systems models are important tools for understanding how structure and function are linked in the brain. Here, we
provide a novel modeling framework to examine how functional connectivity depends on structural connectivity in the brain. Existing modeling frameworks typically
focus on noise-driven (or stochastic) dynamics near a single attractor. Complementing existing approaches, we examine deterministic features of the distribution of
attractors, in particular, how regional states are correlated across all attractors — cross-attractor coordination. We found that cross-attractor coordination between
brain regions better predicts human functional connectivity than noise-driven single-attractor dynamics. Importantly, cross-attractor coordination better accounts
for the nonlinear dependency of functional connectivity on structural connectivity. Our findings suggest that functional connectivity patterns in the brain may reflect
transitions between attractors, which impose an energy cost. The framework may be used to predict transitions and energy costs associated with experimental or

clinical interventions.

1. Introduction

A fundamental goal of neuroscience is to understand how the struc-
ture of the brain constrains its function (Sporns and Tononi, 2001).
The advent of neuroimaging techniques has enabled detailed, quanti-
tative examination of the structure-function relation, often by compar-
ing the structural and functional connectivity between brain regions
(Damoiseaux and Greicius, 2009; van den Heuvel and Pol, 2010). The
resting-state functional connectivity is of particular interest, given its
relevance to a variety of cognitive functions, neurological diseases,
and psychiatric disorders (van den Heuvel and Pol, 2010; Saggar and
Uddin, 2019). Though structural connectivity and functional connec-
tivity are correlated, the former does not entirely predict the lat-
ter—strong functional coupling exists between regions with only weak
or indirect structural connections (Damoiseaux and Greicius, 2009;
Honey et al., 2009). Nonlinear dynamical models have been used to
provide a mechanistic understanding of the structure-function rela-
tion (Breakspear, 2017; Deco et al.,, 2011; Park and Friston, 2013)
and provided many insights (e.g. Deco et al. (2009, 2014, 2013b);
Demirta et al. (2019); Ghosh et al. (2008); Golos et al. (2015);
Hansen et al. (2015); Honey et al. (2007)). While successful, previous
dynamical system approaches often focus on dynamics near a single
stable state, i.e., an attractor. However, biological systems such as the
brain are often multistable (Kelso, 2012; Laurent and Kellershohn, 1999;
Zhang et al., 2019), i.e., multiple attractors can coexist in the brain’s
dynamical landscape. Such multistability begs the question of whether
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examining the overall layout of the brain’s attractor states could bet-
ter inform or complement what we know about the structure-function
relation than explorations around a single state.

Intrinsic brain dynamics have long been observed (Berger, 1929;
Bishop, 1932) but often treated as a baseline subtracted from task-
positive activities. This baseline, however, is more active than meets
the eye: it consumes the largest fraction of the brain’s energy resources,
while task-related consumption adds little (Raichle and Mintun, 2006).
It constrains task performance and related neural activities across mul-
tiple time scales (Fox et al., 2006; Ligeois et al., 2019; Schroeder and
Lakatos, 2009), and contributes to alteration in neurological and psy-
chiatric disorders (Ayub et al., 2021; Bluhm et al., 2009; Garrity et al.,
2007; Green et al., 2017; Zhang and Raichle, 2010). In contrast to
the restless dynamics is the (relatively) static structure—the anatom-
ical connections between brain regions, which can be estimated non-
invasively using large-scale tractography from diffusion-weighted im-
ages (Basser et al., 2000). How can one compare the ever-changing
with the unchanging? From a statistical perspective, one may compute
the time-averaged features of the dynamics, such as the correlation be-
tween signals generated by two brain regions across time—a common
measure of functional connectivity. Such functional connectivity pat-
terns can be directly compared to structural ones through linear corre-
lation (Damoiseaux and Greicius, 2009). From a dynamics perspective
(Breakspear, 2017; Deco et al., 2011, 2013a), the strength of anatom-
ical connections can be incorporated as constant parameters in a sys-
tem of differential equations, i.e. a dynamical system. The dynamical
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system, in turn, describes how the state of a model brain, endowed with
realistic anatomy, would evolve over time. The time series generated
by the model brain and the derived functional connectivity patterns can
then be fitted to that of the real brain. Thus, a dynamical system natu-
rally bridges between the unchanging structure and the ever-changing
dynamics.

One popular dynamical systems modeling approach is to simulate
the noise-driven dynamics near a chosen attractor, such as the low ac-
tivity ground state, and compare it to the human resting brain dynamics
(see Cabral et al. (2017) for a summary of different approaches). Such
noise-driven exploration of a single attractor has been shown to exhibit
key features of human resting brain dynamics, especially near criticality
(e.g. Deco et al. (2013b); Demirta et al. (2019); Ghosh et al. (2008)).
On the other hand, noise-driven exploration beyond a single attrac-
tor—across multiple attractors or “ghost” attractors—has been shown
to capture non-stationary resting brain dynamics and the switching be-
tween different dynamic functional connectivity patterns (Deco et al.,
2009; Deco and Jirsa, 2012; Golos et al., 2015; Hansen et al., 2015).
The best fit to empirical data is often found near the onset of multi-
stability (Deco and Jirsa, 2012; Golos et al., 2015). These observations
suggest that examining the layout of the attractor repertoire over the
entire multistable landscape could be crucial for understanding the or-
ganization of resting brain dynamics (c.f. Golos et al. (2015)).

Complementing existing single-attractor approaches, the present
work focuses on the deterministic features of the multistable landscape
and examines their empirical relevance. Specifically, we systematically
study the organization of the attractor repertoire as a window into the
overall shape of the dynamic landscape. We focus on two complemen-
tary features of the attractor repertoire: (1) to what extent the states of
any two brain regions are correlated across all attractors, which we re-
fer to as cross-attractor coordination, and (2) the distribution of energy
gaps between the attractors, which indicates how difficult it is to move
across attractors. Mathematically, the former describes in which direc-
tions the attractors fall in line with each other in the state space, and
the latter describes the spacing between attractors in a predefined direc-
tion (such a direction can represent the whole brain or a specific subnet-
work). Empirically, we examine how cross-attractor coordination relates
to empirically observed functional connectivity between brain regions,
and how energy gaps impose a cost on the realization of specific func-
tional connectivity patterns. For constructing the landscape, we use a
Wilson-Cowan type biophysical network model that formally combines
the reduced Wong-Wang model (Deco et al., 2014, 2013b; Wong and
Wang, 2006) and the Wilson-Cowan model (Wilson and Cowan, 1972,
1973). We first showed that the model exhibits extensive multistability,
i.e. a large repertoire of attractors to serve as landmarks of the land-
scape. Further, the model also allows us to examine, computationally
and analytically, how structural features across scales shape this reper-
toire. It is important to note that here we used a broader definition
of structural features and not only include large-scale structural con-
nectivity between brain regions, but also local recurrent connectivity
within regions, and biophysical constraints at the cellular level. Using
this modeling framework and a small dataset from the Human Connec-
tome Project (HCP; n=100; Van Essen et al, 2013), we provide evidence
with regards to how the cross-attractor relations in the repertoire could
better capture key features of human resting functional connectivity and
how such features are shaped by structural features across scales. Fi-
nally, we provide a novel framework to analyze the energy constraints
for such cross-attractor coordination across different local and global
structures.

2. Results
2.1. The model

Whole-brain dynamics are modeled as the mean-field activity of
neuronal populations in each brain region. We use a Wilson-Cowan
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type model (Wilson and Cowan, 1972, 1973), which is also an adapted
version of the Wong-Wang model (Deco et al., 2014; Wong and
Wang, 2006) with a sigmoidal transfer function (equation S11). The
adaptation improves the biological plausibility and multistability upon
the reduced Wong-Wang model. Here, we briefly introduce the model;
an extensive analysis of the numeric and mathematical properties of the
model is provided in the Supplementary Materials (Section S4 for nu-
meric results, Section S8-S9 - for analytical results). Each model region
contains a pair of excitatory (E) and inhibitory (I) populations, whose
activity is described by the local model Fig. 1a, left box; equation 1-(3) in
terms of the state variables S and .S;. Physically, S and S, are inter-
preted as the fraction of open synaptic channels in their respective pop-
ulations, i.e. the gating variables. Through local connections (w’s), the
excitatory population excites itself with strength w5 and the inhibitory
population with strength wy;, while the inhibitory population inhibits
itself with strength w;; and the excitatory population with strength w; .
Local models further connect to each other through a global network
Fig. 1a, dashed lines), giving rise to the global model (right; equation 4-
(6). For the global model, nodes of the large-scale network correspond
to anatomical regions in the human brain based on a 66-region parcel-
lation used in Deco et al. (2013b) and Hagmann et al. (2008) (Fig. 1b).
Edge weights of the network reflect the strength of long-range struc-
tural connectivity between the brain regions (C;; in equation 6), either
estimated using structural data from the Human Connectome Project
(Civier et al., 2019; Van Essen et al., 2013) (Section 4.5.1) or artifi-
cially constructed for comparison. The overall strength of long-range
connections in the model brain is scaled by a global coupling param-
eter G (equation 6), which denotes the overall level of inter-regional
interaction across the whole-brain. In similar modeling approaches, G
is typically treated as a free parameter to be fitted to the empirical
fMRI data (e.g., Deco and Jirsa (2012); Deco et al. (2014, 2013b);
Demirta et al. (2019)). It was thought to be an indicator of the level of
arousal or wakefulness (Jobst et al., 2017). In the present work, we first
examine theoretically how parameter G influences the dynamic land-
scape of the model (Fig. 4) and then fit it to individual subjects’ f{MRI
data.

In the present work, the local and global models are used in two
ways: (1) to compute the repertoire of attractors using zero-finding algo-
rithms (see Section 4.2 for details) and (2) to be numerically integrated
to generate simulated brain dynamics. The former is used to character-
ize the overall organization of the model dynamic landscape. The latter
is used to characterize local explorations of the dynamic landscape. Both
aspects are compared to the human data to demonstrate the empirically
relevant features. Below, we first illustrate the concept of a dynamic
landscape and cross-attractor coordination using a toy example, which
is followed by more realistic models to examine how structural proper-
ties across scales affect the dynamic landscape.

2.2. Multistable landscape of the brain shaped by structural properties
across scales

We begin this subsection with a brief introduction to basic dynamical
systems concepts necessary for understanding the results. Readers who
are highly familiar with dynamical systems concepts such as attractors,
phase transitions, and bifurcations should feel free to skip the following
paragraph together with Figs. 2 and 3.

We first introduce basic dynamical systems concepts using a toy
model of a single brain region (Fig. 2), and then show how inter-regional
synchronization arises within this conceptual framework using a toy
model of two-region coordination (Fig. 3). The dynamics of a single
brain region is here governed by a potential landscape (black curves in
Fig. 2a-c for three different landscapes). When the brain state is in the
bottom of a valley (red balls), it is stable and referred to as an attrac-
tor. When the brain state is on a peak, it is unstable and referred to
as an repeller (black ball). These landscapes can continuously deform
into one another under the variation of a control parameter (Fig. 2d),
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Fig. 1. A dynamic mean-field model of the human brain. (a) The model brain (global model) consists of a network of brain regions (local model). The local model
(black box) describes the interaction between two local neural populations — one excitatory (E) and one inhibitory (I). The two populations are coupled via two
excitatory connections (red; wy; and wy,) and two inhibitory connections (blue; w,, and w, ). The excitatory population of each brain region can further receive
input (gray arrow, I;) from other regions via long-range structural connections (red dashed curves). (b) Nodes in the global model correspond to 66 anatomical
regions of the human brain, which can be linked together by the human connectome (see text). Regions are indexed from 1 to 66 (1-33 on the right hemisphere,
34-66 on the left hemisphere in reverse order, following Deco et al. (2013b)). Specific region names are listed in Table S1.
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Fig. 2. Conceptual illustration of single-region
dynamic landscapes and a bifurcation diagram.
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il current input from other regions. The variation
of the dynamic landscape with respect to the
control parameter can be studied through the
(e) bifurcation diagram variation of its attractors and repellers, shown

brain state
o
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as points projected to the bottom plane. This
simplified representation, which depicts how
the attractors and repellers depend on the con-
tinuous changes of the control parameter, is
called a bifurcation diagram (e). In the bifurca-
tion diagram, each attractor traces out a stripe
(two red lines) under the continuous change
of the control parameter. At critical values of
the control parameter (+1), one attractor is an-
nihilated by the repeller and disappears. This
process is referred to as a bifurcation.

attracto’

uonednyiq

for example, the total level of current input from other brain regions.
A bifurcation diagram (Fig. 2d bottom plane, Fig. 2e) keeps track of
how the landscape changes with the control parameter via the location
of attractors and repellers. At certain points, an attractor disappears by
merging into a repeller, which is called a bifurcation. Now, let us con-
sider a slightly augmented toy model that involves two interacting brain
regions, i.e., the left and right hemisphere (Fig. 3). An attractor in this
toy model represents a stable pattern of activation over the whole brain,
shown as boxed brains in Fig. 3. The dynamic landscape determines a
repertoire of attractors, different combinations of regional states, with
possible paths of transitions between them. Fig. 3a shows such a toy
landscape with four attractors (i-iv), each with a different whole-brain
activation map. Similar to the single-region landscape, the 3D landscape
can be deformed by changes in a control parameter (such as different
levels of inter-regional coupling, not shown), which may lead to the
creation or destruction of specific attractors through bifurcations (e.g.,
Fig. 3, ato c, a to b). Such creation and destruction of attractors cause a

= 0 1
control parameter

discrete change of the attractor repertoire, and the set of possible tran-
sitions. Note that here a transition refers to a change in state, where
as a bifurcation refers to a change in the attractor repertoire. A bifurca-
tion can trigger a transition if the system was in a state/attractor that is
destabilized during the bifurcation; given sufficient noise, a spontaneous
transition can occur without a bifurcation. Further, changes in the at-
tractor repertoire can alter how the brain regions coordinate with each
other. Two example bifurcations are shown in Fig. 3b-c. In Fig. 3b, only
two out of four attractors are left, such that the brain can now only tran-
sition between attractor (i) and (iii), thereby leading both hemispheres
to be in sync (on or off together). This coordination of brain regions
(or hemispheres) can be captured by estimating the cross-attractor co-
ordination matrix (shown in Fig. 3). Similarly, in Fig. 3c, three out of
four attractors are left after bifurcation, leading to more complex co-
ordination between brain regions (or hemispheres). Fig. 3d-f presents
a more complex example, where a finer parcellation is used and each
brain region can now take three activation values (instead of just on
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Fig. 3. Conceptual illustration of the whole-
brain dynamic landscape, bifurcation, and
phase transition. A multistable dynamic land-
scape (a) contains multiple attractors, shown
as troughs occupied by purple balls. Each at-
tractor corresponds to a distinct pattern of ac-
tivation over the whole brain (i-iv). Influenced
by external input or intrinsic noise, the model
brain may transition from its current state (at-
tractor i, bright purple ball) to a different one

N

attractor repertoire
shapes inter-regional

black arrows. Structural features of a model
brain can alter the shape of the landscape,
causing some attractors to appear or disap-
pear through a process mathematically named
a bifurcation (a—b, a—c, or the reverse). By
modifying the repertoire of attractors, bifurca-
tion alters the set of possible transitions and
the coordination between regions during tran-
sitions. For example, in landscape (a), the left
and right hemisphere can be co-activated dur-
ing a transition (i—iii), or activated separately
through other transitions (i—ii, or i—iv). In
contrast, in landscape (b), the left and right
hemisphere can only be co-activated, and in
(c), only activated separately. Numerically, a
repertoire of attractors can be represented as
a matrix, where each row represents an attrac-
tor and each column represents a brain region
(repertoire matrix a, b, ¢, with entries shown
as blue/red color blocks). The overall inter-
regional coordination across attractors can be
estimated by the rank correlation between the
columns of the repertoire matrix. The resulted
square coordination matrix summarizes how
brain regions transition together over the en-
tire landscape, serving as a signature of the
landscape (coordination matrix a, b, ¢, shown
to the right of each repertoire). In more com-

i~

plex landscapes (not shown), there are many more attractors, and they correspond to subtler patterns of activation (d,e; see also Fig. 4). The coordination between
brain regions during a transition is correspondingly more complex (f=e-d), with some regions co-activated (red) while others co-deactivated (blue).

or off), resulting in more complex spatial activation patterns across the
whole brain as well as complex coordination between brain regions. See
Section 4.3 for technical details about how the coordination matrix is
estimated.

Next, we present a set of more realistic examples to show how local as
well as global structural connectivity of the brain can shape the dynamic
landscape, its associated repertoire of attractors and their transitions.
Here, we depict dynamic landscapes and their changes as bifurcation
diagrams (Fig. 4; see Section 4.2 for computational details). Fig. 4 shows
nine different bifurcation diagrams, across its three rows and columns.
The rows correspond to bifurcation diagrams from: (first row: a-c) a
single brain region (local model); (second row: d-f) the entire brain with
uniform connectivity across all brain regions; and (third row: g-i) the
entire brain with realistic connectivity across all brain regions. Thus,
the second and third rows of Fig. 4 aim to depict the effect of changes in
global structural connectivity on the dynamical landscape. The columns,
on the other hand, in Fig. 4 aim to depict the effect of changes in local
connectivity, i.e., level of excitation within the individual brain regions,
on the dynamic landscape.

In each bifurcation diagram, the y-coordinate of each colored point
indicates the position of an attractor: here we use the average activity of
all excitatory populations Sy (Fig. 4d-i; black points are repellers). The
x-coordinate indicates the value of a control parameter, which mod-
ulates the shape of the underlying dynamic landscape: here we use
the overall strength of long-range connections—the global coupling G
(equation 6). Further, each vertical slice of a bifurcation diagram con-

tains the repertoire of attractors and repellers in a fixed landscape (an
example slice is shown in Fig. 4h), corresponding to stable and unstable
patterns of brain activity respectively. Lastly, an attractor traces out a
horizontal “stripe” as it changes continuously with the landscape (exam-
ples shown in Fig. 4d-i). A colored stripe merges with a black stripe at a
bifurcation, where an attractor is annihilated by a repeller. The number
of colored stripes indicates the complexity of the landscapes, i.e., more
stripes indicate more attractors.

Locally within each model brain region, the dynamics are controlled
by local structural connectivity (w’s in Fig. 1a; see Section S4 for de-
tailed numeric results and Section S8 for analytical results). In partic-
ular, a single model region can switch between a rich set of dynamic
regimes by varying the excitatory-to-excitatory connections (wy) and
the excitatory-to-inhibitory connections (w ; Figure S1). Fig. 4a-c show
the bifurcation diagrams for three local connectivity settings from three
distinct dynamic regimes (regime e, d, and a respectively in Figure S1).
With an overall increase of local excitatory connectivity from (a) to (c),
a single region becomes more complex—more attractors and stronger
oscillatory activities.

To understand the effects of global connectivity, we first examined
the brain dynamical landscape where all regions are uniformly con-
nected with each other Fig. 4d-f). Here, stronger local excitatory con-
nections (e,f) produce a more complex landscape (3 attractor stripes)
than weak ones (d; 2 attractor stripes; see Figure for even weaker local
connections). These bifurcation diagrams are very similar to those of a
single brain region (Fig. 4a-c), in terms of the number of attractors and
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Fig. 4. Local and global structural properties jointly determine the complexity of whole-brain dynamics. (a-c) show the bifurcation diagrams of the local model for
three different types of local excitatory connectivity: (a) wy; = 0.7 and wy; = 0.35; (b) wgy =2 and wy; = 1; (¢) wyp = 2.8 and wy,; = 1 (representatives of distinct
dynamic regimes of the local model, Figure S1). Overall, local connectivity increases from (a) to (c). The activity of the excitatory population S is used as an order
parameter, indicating the location of each attractor. The external input I is used as a control parameter. Each point in the diagram indicates the location of a
particular fixed point. The color denotes the type of each fixed point: non-black points represent attractors, black points unstable fixed points that are not associated
with a limit cycle. Horizontal stripes indicate that the attractors are changing continuously with the control parameter for a certain range. All (a)-(c) have an upper
stripe and a lower stripe. (b)-(c) have an additional stripe in the middle, where the brain region oscillates. Insets of (b) and (c) show the oscillation frequency of the
brain region as a function of the input current. Each stripe corresponds to a discrete level of activation for a single brain region (circled brains in b; color indicates
discrete S levels, shown in circled legend). (d)-(f) show the corresponding bifurcation diagrams for three uniform global networks, i.e. the large-scale structural
connectivity C;’s are identical between any two brain regions (equation 6). The average activity of all excitatory populations (Sg) is used as an order parameter
and the global coupling G (equation 6) as a control parameter. Each attractor stripe corresponds to a pattern of activation over the whole brain (circled brains
in (e) show S(b‘.)’s on the left hemisphere). Similarly, (g)-(i) show the corresponding bifurcation diagrams for three realistic global networks, i.e. C;;’s reflect the
human connectome (see text for details). Here each vertical slice (gray line in h) contains the attractor repertoire of a fixed dynamic landscape shaped by the human
connectome. Each attractor repertoire is associated with a matrix describing the coordination between brain regions across attractors (e.g. Fig. 5b). See Fig. 3 for a
cartoon illustration of attractor repertoires and the associated cross-attractor coordination matrices.

the presence of oscillation. In fact, the whole brain (Fig. 4e) moves up
and down together between discrete states of activation, very much like
a single region (Fig. 4b). Note that, for the global model (equation 4-(6)
to be multistable, a minimal amount of global coupling is required, i.e.,
G > 1 (Fig. 4d-f). If the brain regions act independently (G = 0), both the
individual regions (Fig. 4a-c at I, = 0) and the whole brain (Fig. 4d-f
at G = 0) are monostable—there is only one stable pattern of activity,
where the gating variables are all close to zero. This result indicates
that a functionally complex brain can emerge out of the synergistic in-
teraction between simple regions. Additional analytical and numerical

results are provided in Section S9 (Multistability) for further validation
and generalization.

Next, we show that in addition to the global coupling G, the details
of inter-regional connections matter too (C; ; in equation 6). Given a
realistic global structural connectivity (human connectome; Fig. 4g-i),
the complexity of the whole-brain dynamic landscape increases dramat-
ically: 171 attractor stripes in (g), 610 in (h), and 682 in (i) (per single-
linkage clustering). Correspondingly, the patterns of activation (Fig. 4h)
are more complex, with greater differentiation between regions; the co-
ordination between brain regions across attractors is consequently more
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Fig. 5. Cross-attractor coordination captures large-scale symmetry of human functional connectivity and its nonlinear dependency on structure better than within-
attractor coordination. An example of human functional connectivity matrix (a) is calculated using the resting fMRI data from the Human Connectome Project
(Van Essen et al., 2013), averaged over 11 unrelated subjects. The average structural connectivity of the same subjects is shown in (c). Regions (columns and
rows) are ordered symmetrically for the left and right hemispheres (see Fig. 1b) to reveal the large-scale symmetry of resting brain dynamics (ordering follows
Deco et al. (2013b); see the complete list of region names in Table S1). White dashed lines delineate the matrix (a) into four blocks, describing the functional
connectivity within the right hemisphere (upper left block), within the left hemisphere (lower right), and between two hemispheres (lower left/upper right). Functional
connectivity patterns within the hemispheres are similar to each other and similar to inter-hemispheric connectivity patterns. The symmetry between intra- and inter-
hemispheric connectivity is well captured by inter-regional coordination in the model brain across attractors (b) (wgy =2, wg; =1, G = 2.22 for local maximum
model-human similarity; c.f. Fig. 4h gray slice). Such symmetry is not captured by the coordination within any of the said attractors (d; best fit within-attractor
coordination matrix). When examined across individuals (using n=100 unrelated HCP participants), a significantly better model-human similarity was obtained
when cross-attractor coordination was used instead of within-attractor coordination (e); the difference between cross-attractor coordination and within-attractor
coordination with respect to model-human similarity is even greater when partial correlation is used to control for the contribution of structural connectivity (f).
Comparing intra-hemisphere and inter-hemisphere functional connectivity separately (g), we found that cross-attractor coordination captures human intra- and
inter-hemisphere functional connectivity equally well (red bars), while within-attractor coordination is better at capturing intra-hemisphere than inter-hemisphere
functional connectivity (blue bars). The distributions of correlation coefficients were obtained through a model fitting procedure with the same local parameters
(wgg =2, wg; = 1) while allowing the G parameter to vary from 1.7 to 3.0 by steps of 0.1.

flexible and subtle (as depicted in Fig. 3f). The heterogeneous nature of results, we used individual structural and functional connectivity esti-

the human connectome breaks the large-scale spatial symmetry of the mates across all 100 unrelated individuals from the HCP data.

model brain, creating more functional differentiation between brain re- Typically, human functional connectivity (FC) is calculated from the
gions and greater functional complexity for the whole brain. In short, fMRI data by estimating co-fluctuations across brain regions. The es-
the complexity of the global dynamical landscape is a joint product of timated resting state FC matrix usually reflects large-scale symmetry
strong local excitatory connection and complex topology of the large- across the two hemispheres, such that brain regions across the two hemi-
scale network. See Section S9 for additional analytical supports. spheres highly co-fluctuate (i.e., high antidiagonal values in Fig. 5a).

For qualitative results, we used averaged structural and functional con-
nectivity matrices across a small subset of the HCP n=11 unrelated in-
dividuals (see Section 4.5 for more details). Using averaged structural
connectivity matrix, a dynamical landscape Fig. 4h) was generated and
cross-attractor coordination was estimated for a chosen G = 2.2. At the
selected G, 97 attractors were found. Mathematically, each attractor is
represented by a row vector denoting the activity level of all brain re-
gions (equation 8-(9). Thus, for a chosen G, using the (#attractors x
#regions) matrix we estimated the cross-attractor coordination between
regions (equation 10), such that regions that co-fluctuate across attrac-
tors tend to show high cross-attractor coordination (or similarity). See
Section 4.2 for mathematical details and Fig. 3a-c for an intuition regard-

2.3. Cross-attractor coordination reveals large-scale symmetry of human
brain functional connectivity

In this section, using data from the Human Connectome Project
(HCP) (Van Essen et al., 2013), we present both qualitative and quanti-
tative results to show how cross-attractor coordination could better cap-
ture key features of human resting functional connectivity than noise-
driven within-attractor coordination. For qualitative results, we used
averaged structural and functional connectivity across subjects from a
smaller HCP cohort (n=11 individuals), whereas for the quantitative



M. Zhang, Y. Sun and M. Saggar

ing the estimation of cross-attractor coordination matrix. As shown in
Fig. 5b, the dominant feature of human resting state FC, i.e., large-scale
symmetry across brain regions, is well preserved in the cross-attractor
coordination matrix. Such inter-hemispheric symmetry is not seen in
stochastic within-attractor coordination (Fig. 5d). Moreover, the pat-
tern of within-attractor coordination is a closer reflection of the human
structural connectivity (Fig. 5¢) than the human functional connectivity
(Fig. 5a).

Next, to examine the model fit on an individual basis, we ran a
quantitative analysis using the n=100 unrelated-individuals cohort of
the HCP data (Van Essen et al., 2013). Our results confirm that cross-
attractor coordination can better predict human functional connectivity
than within-attractor coordination. The maximum model-human corre-
lation for cross-attractor coordination has an average Spearman’s Rho
of 0.50 (S.D. 0.09), while the correlation for within-attractor coordina-
tion has an average of 0.34 (S.D. 0.06) (Fig. 5d). That is, on average,
cross-attractor coordination explains 25.0% of the variance in human
FC, while within-attractor coordination explains 11.6% of the variance
in human FC. Based on within-subject paired t-test, cross-attractor coor-
dination provided significantly better fit of FC (#(99) = 20.2, p < 1073%;
Fig. 5e). To understand how the two types of models relate to the un-
derlying structural connectivity, we calculate the partial correlation be-
tween model coordination matrices and human functional connectivity,
controlling for the linear contribution of structural connectivity. With
the contribution of structural connectivity controlled, the model-human
correlation for cross-attractor coordination has an average Spearman’s
Rho of 0.39 (S.D. 0.10), which is significantly greater than that of
the within-attractor coordination 0.17 (S.D. 0.07) (Fig. 5f; #(99) = 21.9,
p < 10739). That is, excluding the contribution of structural connectivity,
cross-attractor coordination explains 15.2% of the variance in human
FC, while within-attractor coordination explains 2.9% of the variance
in human FC. 40% of the explanatory power of cross-attractor coordi-
nation comes from structural connectivity, while 75% of the explanatory
power of within-attractor coordination comes from structural connectiv-
ity. Furthermore, the difference between the partial correlation coeffi-
cients for the cross-attractor coordination and the within-attractor coor-
dination (0.22 + 0.10) is significantly greater than that of the regular cor-
relation coefficients (0.16 + 0.08) with 7(99) = 9.5 and p < 10~'# (Fig. 5f
vs. Fig. 5e), which suggests that within-attractor coordination is more
linearly dependent on the structural connectivity. Finally, we show that
the model-human similarity for inter-hemisphere coordination is sig-
nificantly lower than that of intra-hemisphere coordination for within-
attractor coordination but not for cross-attractor coordination (Fig. 5g).
In other words, unlike within-attractor coordination, cross-attractor co-
ordination captures human intra- and inter-hemisphere functional con-
nectivity equally well.

To understand how variability in individual model parameters trans-
lates into measures of behavior, individual parameters were correlated
with a measure of fluid intelligence, an abbreviated version of the
Raven’s Progressive Matrix Test (PMAT). Correlating the model param-
eters with measures of fluid intelligence showed one significant result.
Specifically, the strength of the model-human similarity and the number
of correct responses on the test was significantly correlated (Spearman’s
Rho = 0.21, p = 0.04) after controlling for age and sex. All other corre-
lations with fluid intelligence measures were not significant.

2.4. Structural connectivity defines the energy demands of cross-attractor
coordination

In the above section, we computed the cross-attractor coordination
matrices (equation 10 in Section 4.3), which only concerns whether two
brain regions move up and down together across the dynamic land-
scape, but not how difficult or metabolically expensive such move-
ments are. In this section, we examine the “energy gaps” between the
attractors, and how they are shaped by local and structural proper-
ties of the model. Fig. 6a gives a conceptual illustration of the rela-
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tion between attractors and the energy gaps between them. Each at-
tractor is associated with an average level of activity or energy (Sg;
equation 11) given a fixed parameter G. There is an energy gap be-
tween each pair of adjacent attractors (equation 12; see a full technical
description in Section 4.3). In the subject-average model (n=11, HCP;
Fig. 4g-i), the average and maximum energy gap clearly vary with local
connectivity (wgp, wg;) and global connectivity (G), here summarized
in Fig. 6b. Quantitatively, stronger local connections reduce the energy
gaps (Fig. 6¢,d), and stronger global connections (G) increase the energy
gaps (Fig. 6b)—local and global structural connectivity pull the energy
cost in different directions.

Next, we examine the effect of energy constraints on model fit. With-
out energy constraints, the computation of the cross-attractor coordina-
tion assumes that the brain could traverse arbitrarily large energy gaps,
while in reality, crossing very large energy gaps may be unrealistic. To
incorporate the effect of energy constraints (see Section 4.3 for detailed
methods), we split an ordered attractor repertoire into sub-repertoires
between which the energy gap is considered too high. Thus, we obtain a
sub-repertoire above the maximum energy gap, equation 13, and a sub-
repertoire below the maximum energy gap, equation 14. Cross-attractor
coordination matrices computed within the sub-repertoires can be con-
sidered as energy-constrained coordination patterns between brain re-
gions. Fig. 7a-c shows that such energy-constrained cross-attractor coor-
dination (dashed lines) is more sensitive to different structural features
in its ability to capture human functional connectivity. The energy con-
straint inflicts a greater loss of model-human similarity when the local
structural connectivity is weak (area of the shaded region shrinks from
Fig. 7a to ¢, and bars in d decreases with increasing local connectiv-
ity from left to right) and the global structural connectivity is strong
(height of shaded regions grows with G in Fig. 7a-c). The loss of simi-
larity grows with the maximum gap size (Fig. 7d; p = 0.96, p<10~'% for
wgg =0.7and wg; = 0.35; p = 0.92, p<10~1% for wyp =2 and wg; = 1;
p=0.85, p<107'% for wy = 2.8 and wx; = 1). This indicates that mod-
els fitted with a high value of G may implicate an unrealistic level of
high-energy-cost transitions. When cross-attractor coordination matri-
ces were fitted to n=100 unrelated HCP subjects (Fig. 5e), the optimal
G is 2.5 +0.28 (Fig. 7e). The corresponding maximum energy gaps av-
erage to 0.12 + 0.08 (Fig. 7f), and the corresponding mean energy gaps
average to 0.009 + 0.015 (Fig. 7f). Thus, the optimal cross-attractor mod-
els in the present study are located in a realistic regime, which is least
affected by energy constraints (Fig. 7d, max energy gap<0.2).

3. Discussion

The present work examines how the brain’s multistable dynamic
landscape can be shaped by structural features across scales and what
features of the landscape are relevant to empirical observations. Com-
plementing the previous stochastic noise-driven exploration approach,
the present work focuses on the deterministic features of the multistable
landscape and examines their empirical relevance. We demonstrate that
large-scale symmetries of human functional connectivity patterns and
their nonlinear dependency on the structure could be better explained
by the relation between attractors in the landscape than the property
of any individual attractor. Thus, the present work offers a novel cross-
attractor perspective on resting brain dynamics, equipped with a com-
putational framework to produce empirical relevant summaries of the
attractor repertoire in full as well as in parts.

The functional complexity of the model brain is controlled by both
local and global structural connectivity. At the level of a single isolated
brain region, the dynamic repertoire can be effectively controlled by
two key local structural properties: local excitatory-to-excitatory con-
nectivity (self-excitation) and local excitatory-to-inhibitory connectiv-
ity. In the real brain, local excitatory-to-excitatory connections are par-
ticularly abundant (Somogyi et al., 1998), and in the model brain, they
contribute indispensably to multistability (Section S8). Multistability
is a key source of biological complexity from molecular to social lev-
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els (Laurent and Kellershohn, 1999; Zhang et al., 2019), often tied to
self-excitation or positive feedback (Angeli et al., 2004; Arthur, 1990;
Attneave, 1971). Manipulating the model’s local excitatory-to-excitatory
connections have physical implications. The recurrent excitatory synap-
tic properties of the present model is determined by the conductance of
the N-methyl-D-aspartate (NMDA) receptors (Wong and Wang, 2006).
Thus, modulating excitatory-to-excitatory connectivity in the model can
be interpreted empirically as modulating the conductance of NMDA
receptors in local neuronal populations, using, for example, pharma-
cological and endogenous antagonists and agonists such as ketamine
(Orser et al., 1997) and dopamine (Wang et al., 2012). Such manipula-
tions have been theoretically predicted and shown to affect memory ca-
pacity (Anticevic et al., 2012; Murray et al., 2014; Verma and Moghad-
dam, 1996). Note that the strength of local excitatory-to-excitatory con-
nections needs to surpass a critical value to induce the transition from
a monostable to a multistable regime (equation S30). In the present
work, this critical value is a constant (equation S29), which depends on
cellular-level properties such as the membrane time constant and the
gain of the input-output response. Thus, manipulating such microscopic
properties can induce, or remove, multistability from a single brain re-
gion.

At the large-scale network level, multistability can be created or
amplified by the synergistic interaction between mono- or multi-stable
brain regions. Different large-scale network structures have dramati-
cally different capabilities at amplifying local complexity: a realistic
global network is much more powerful than a uniform one. The human
connectome breaks the spatial symmetry of the global model, whereas
symmetry breaking is often a key to complex dynamics (Golubitsky and
Stewart, 2002; Golubitsky et al., 1999; Kelso, 1995; Kelso et al., 2013;
Pillai and Jirsa, 2017; Tognoli and Kelso, 2014). On the other hand, the
human connectome is endowed with more specific features such as mod-

ularity, small-worldness, and multiscale characteristics (Sporns, 2002,
2004, 2011; Sporns and Tononi, 2001). A systematic study of how these
features alter the geometry of the global dynamic landscape is worthy
of further theoretical investigation (see Section S9).

Within the multistable landscape sculpted by the human connec-
tome, inter-regional coordination across attractors exhibits key features
of human functional connectivity patterns. Such cross-attractor coor-
dination better captures human functional connectivity than within-
attractor coordination—synchronization between brain regions within
the same basin of attraction. This finding raises the possibility that
functional connectivity patterns reflect transitions between stable brain
states more than the brain states themselves.

A transition-based, or cross-attractor, view on functional connec-
tivity has several theoretical and empirical implications. First, it pro-
vides an explanation for the large-scale symmetry of human FC, i.e.,
the similarity between intra- and inter-hemispheric connectivity pat-
terns. It has been noted that within-attractor dynamics of similar models
lack such symmetry, exhibiting weak inter-hemispheric FC (Deco et al.,
2013b; Demirta et al., 2019). The weak inter-hemispheric FC has been
attributed to an underestimation of structural connections across hemi-
spheres using diffusion-weighted imaging. This explanation is reason-
able given that within-attractor dynamics can be approximated by a lin-
ear dynamical system, which closely depends on the structural connec-
tivity (Deco et al., 2014, 2013b). Nevertheless, an alternative explana-
tion could be that human FC implicates far-from-equilibrium dynamics
where the nonlinearity cannot be ignored (Hansen et al., 2015). It is
a signature of nonlinear systems that a small input does not necessar-
ily produce a small effect. Indeed, strong functional connectivity in hu-
mans is known to exist between regions that are not directly connected
(Honey et al., 2009). As we have shown, cross-attractor coordination
takes into account such nonlinear effects. Mathematically, our cross-
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Fig. 7. The loss of model-human similarity due to energy constraints depends on local and global structural features. (a-c) The model-human similarity for cross-
attractor coordination (no energy constraint, black solid lines) is stable with respect to varying global coupling G and local excitatory connectivity wgy and wg,
(a: wgg =0.7 and wg; =0.35, b: wrp =2 and wg; =1, ¢ wgp = 2.8 and wg; = 1). Dashed lines indicate the model-human similarity when the model is energy-
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G (e) and the corresponding maximum energy gap (f) and mean energy gap (g) are low, where the cross-attractor coordination is least affected by energy constraints.

(*** p<0.001 with Bonferroni correction. Error bars are standard errors.)

attractor approach amounts to studying the relation between the zeros
of a nonlinear function—a problem that does not admit a linear ap-
proximation. The symmetry between intra- and inter-hemispheric con-
nectivity is likely to reflect a symmetry of the set of all zeros, i.e. the
(roughly) invariance of the zero set under the exchange of variable in-
dices between the homologous regions of the left and right hemispheres.
The invariance of the zero set is, in turn, consequent to the invariance of
the differential equations under such a left-right reflection. A full math-
ematical treatment of the problem is beyond the scope of the present
study. Nevertheless, it invites theoretical investigations of the symme-
try groups of nonlinear neural dynamical models (c.f. Golubitsky and
Stewart, 2002).

The second implication is that the cross-attractor view is compat-
ible with treating functional connectivity as both stationary and dy-
namical. Cross-attractor coordination, when measured over the entire
dynamic landscape, is itself time-invariant. Empirically observed stabil-
ity and convergence of human functional connectivity (Gordon et al.,
2017; Laumann et al., 2016) may reflect this invariance of the underly-

ing landscape. The static landscape can also support dynamic functional
connectivity (dFC) (Hansen et al., 2015; Hutchison et al., 2013). At any
given time, the possible transitions depend on the attractor currently
dwelled upon. Thus, in a short time window, cross-attractor coordina-
tion is confined to a subset of attractors. In this perspective, dFC re-
flects the transitions between attractors in a subset of the repertoire. As
a consequence, a state-based and a dFC-based representation of neural
dynamics may diverge—subsets of attractors that are close in the state
space may have distinct patterns of transitions, and subsets of attrac-
tors that are far apart in the state space may have similar patterns of
transitions. In other words, precaution may be used when treating dFC
patterns as brain states.

Finally, the cross-attractor view attaches the concept of energy costs
to functional connectivity patterns. In this perspective, the potential
for exhibiting, say, normal resting-state functional connectivity patterns
may always be there, but the energy costs modulate the difficulty for
such potential to be realized. It is especially interesting to consider the
potential “costs” of functional connectivity patterns in relation to cogni-
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tive functions and psychiatric disorders. The energy gaps in the present
framework can be calculated within a subnetwork relevant to a spe-
cific cognitive function. An individualized fitting of the model for a sub-
network may help predict how difficult it is for a subject to perform a
specific type of tasks. Further, examining the energy gap distributions
in people with psychiatric disorders may help elucidate the network
mechanisms underlying the pathology. The neural and behavioral cor-
relates of the energy gaps could be further explored. It is reasonable
to assume that a greater energy gap between two attractors is associ-
ated with a lower probability of transition and thus a lower probability
of observing the corresponding cross-attractor coordination. The cross-
attractor coordination over pairs of, rather than the whole repertoire of,
attractors maps may be compared to dynamic functional connectivity
in empirical analysis. Extending the present framework to the study of
dynamic functional connectivity is a worthy future direction. The use of
simultaneous PET-fMRI may provide more direct evidence for metabolic
measures. To further examine how the energy gaps may affect cognition,
causal manipulations such as non-invasive brain stimulation (e.g., tran-
scranial magnetic stimulation) or pharmacological interventions (e.g.,
Methylphenidate) are required.

Like all scientific studies, the present work has several limitations.
First, although cross-attractor coordination better fits human data than
within-attractor coordination, a large portion of the variance in the hu-
man FC remains unaccounted for. Incorporating additional individual-
ized model parameters may further improve the model fit: for example,
an estimate of the local recurrent connectivity for each brain region
and long-range inhibitory connectivity between brain regions. Never-
theless, there may be a fundamental limit to what biologically realistic
parameters may be estimated from non-invasive measures of the human
brain. Second, the present study has not explored whether increasing the
dimensionality of the model will lead to a better model fit. Two obvi-
ous ways to increase the dimensionality of the model is to increase the
number of local excitatory and inhibitory populations included in each
model brain region (Golos et al., 2015), and/or to use a finer parcella-
tion of the whole brain (Demirta et al., 2019). Both approaches would
likely increase the number of attractors and repellers of the model, pro-
viding a more refined estimate of cross-attractor coordination. In the
present study, the choice of parcellation and the two-population local
model was primarily based on the convention adopted by existing mod-
eling studies using the predecessors of our present model (Deco et al.,
2014; Demirta et al., 2019; Ponce-Alvarez et al., 2015). Identifying a
precise scaling law of the number of attractors as a function of the num-
ber of parcels and the number of local populations is beyond the scope
of the present study but is worthy of further investigation. Future re-
search should also address what minimal complexity/dimensionality of
the model is required to achieve a near-optimal fit. Third, the present
work only focuses on resting-state fMRI data in a neural typical popula-
tion. To understand brain functional connectivity in a broader context,
the computational framework can be extended to study the changes in
functional connectivity driven by external stimulation or due to psy-
chiatric disorders. Future experimental validation of the present frame-
work could utilize fMRI recorded from subjects under non-invasive brain
stimulation such as transcranial direct current stimulation (tDCS), tran-
scranial alternating current stimulation (tACS), or transcranial magnetic
stimulation (TMS). For a most direct example, tDCS generates a static
electric field over the brain, creating different levels of current flow
in different brain regions. Simulated regional currents can be incorpo-
rated into the model as constants I, and I; in equation 1-2. As non-
invasive brain stimulation is increasingly used as a treatment for psychi-
atric disorders such as major depressive disorder (Alexander et al., 2019;
Avery et al., 2006; Brunoni et al., 2016), a modeling framework based
on dynamical systems principles may play an important role in the fu-
ture improvement of treatment designs (Zhang et al., 2022). Fourth, the
present study did not fully explore how features of the model dynamic
landscape can help predict behavioral traits or performances of the sub-
jects. One may expect the model to yield better predictions for tasks or
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behavior that involve interhemispheric coordination. Examples of such
tasks include bimanual motor coordination (Gerloff and Andres, 2002;
Schoner and Kelso, 1988) and language processing involving the non-
dominant (right) hemisphere (Doron et al., 2012). Future research may
explore the correlation between, for example, energy gaps for inter-
hemispheric coordination between relevant brain regions with subjects’
motor and language skills.

In summary, the present work examines intrinsic brain dynamics in
terms of an underlying landscape and the repertoire of stable activity
patterns it affords. Model-based analyses reveal that empirically ob-
served functional connectivity patterns may reflect transitions between
activity patterns more than the patterns themselves. The work outlines
a modeling framework that emphasizes the relation between stable ac-
tivity patterns. It is thus suitable for examining systemic changes in the
brain that result in interrelated improvement or impairment in multiple
cognitive and affective functions, such as in development and psychi-
atric disorders.

4. Materials and Methods
4.1. The present model

The local model is described by the equations,

dS;  Sg
d =-—+U-Sphrg Hg(wgpSg —wipSy + Ig) M
t TE
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W:_T_+(1_SI)VIHI(WEISE_wT’S’+II)' @
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S and S; are the gating variables of the excitatory and inhibitory pop-
ulation respectively (Fig. 1a), which indicate the fraction of open chan-
nels in each population. The activity of each population has a natu-
ral decay time of 7 or 7;, which are the time constants of the NMDA
and GABA receptors (Table S2) respectively. The model is a mean-field
reduction of a network of leaky-integrate-and-fire neurons, where the
slow integration time of the NMDA receptors dominates over the fast
dynamics of the AMPA receptors (Wong and Wang, 2006) (see also Sec-
tion S3). Each population’s activity tends to increase with the fraction
of closed channels (1 — S,) and the population firing rate (H ) scaled
by a factor y, for p € {E, I'}. This is described by the second term on
the right-hand-side of equation 1-2. Hy and H; are transfer functions
that map synaptic current input to population firing rate of the excita-
tory and the inhibitory population respectively. In particular, they are
sigmoidal functions of the form

a,x — bp = Pax

r e —
MAX T pdp(apX—by=Tingx)

H,(x)=

; ©)

1- e—dp(apx—bp)
whose output increases with input monotonically and saturates at
Fnax—the maximum firing rate limited by the absolute refractory period
of neurons (around 2 ms in certain cell types; see Andersen et al. (1978),
Yeomans (1979)). The specific shape of each transfer function is deter-
mined by three additional parameters a s by and d , (a, and b " determine
the location and slope of the near-linear segment in the middle; d, deter-
mines the smoothness of the corners bordering the said near-linear seg-
ment). This transfer function is converted from Wong and Wang’s orig-
inal formulation (Abbott and Chance, 2005; Wong and Wang, 2006) (a
soft rectifier function, equation S6) into a sigmoidal form, while retain-
ing the original value of parameters a,, b,, and d,, (shown in Table 1). As
a result, the present model is a Wilson-Cowan type model (Wilson and
Cowan, 1972, 1973). The parameters were chosen to approximate the
average response of a population of spiking pyramidal cells (p = E) and
interneurons (p = I) respectively, incorporating physiologically plausi-
ble parameters (Wang, 2002; Wong and Wang, 2006).

Interaction between local populations is modulated by four coupling
parameters w,, > 0 in equation 1-2, indicating the influence from the lo-
cal population p to g, where p, g € { E, I'} (Fig. 1 left box). These coupling
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Table 1

The interpretation and value of model parameters. Here we summarize the pa-
rameters used in equation 1-5. Most parameters assume a fixed value, which was
introduced by Wong and Wang (2006). A “~” indicates that this parameter is ma-
nipulated in the present study to explore the behavior of the model or to fit the
model to empirical data. For local connectivity, three pairs of values were used
in the present study for w;; and w,, which are (0.7, 0.35), (2, 1), and (2.8, 1).
These parameters were chosen from three different regimes of the local model
(regime e, d, a in Figure S1-S2), which are dominated by stable fixed points,
damped oscillations, and sustained oscillations respectively. w,; matches wgg
to provide feedback inhibition (Deco et al., 2014). These values fall within a
range comparable to that of existing studies (Deco et al., 2014; Demirta et al.,
2019). The constant excitatory input I, to the local model ranges between 0
and 1 to demonstrate how the dynamics of a single brain region can be altered
by inputs from other regions (Fig. 4). When modeling resting brain dynamics
using the global model I is zero, assuming no external input to the brain. G
ranges between 0 and 5, used to explore the effect of global coupling on multi-
stability (Fig. 4) and to fit the model to empirical data. The range of G used was
consistent with that of existing studies (Deco et al., 2014; Demirta et al., 2019).
C,; is defined by each subject’s structural connectome. The noise amplitude ¢
is set to zero for verifying the classification of fixed points, is set to 0.01 when
calculating within-attractor coordination, following Deco et al. (2014).

parameter interpretation value
T decay time of NMDA receptor 0.1 (s)
7, decay time of GABA receptor 0.01 (s)
YE kinetic parameter of excitatory population 0.641
Y1 kinetic parameter of inhibitory population 1
ap parameter of H 310 (nC™")
bg parameter of Hy 125 (Hz)
dg parameter of H 0.16 (s)
a; parameter of H, 615 (nC™")
b, parameter of H, 177 (Hz)
d; parameter of H, 0.087 (s)
Frnas maximum firing rate 500 (Hz)
WeE excitatory-to-excitatory coupling ~ (nA)
Wy excitatory-to-inhibitory coupling ~ (nA)
Wy inhibitory-to-excitatory coupling ~ (nA)
wy; inhibitory-to-inhibitory coupling 0.05 (nA)
I external input to excitatory population ~ (nA)
I, external input to inhibitory population 0.1 (nA)
G global coupling ~ (nA)

i structural connectivity between brain regions ~
c noise amplitude ~

parameters reflect the local structural connectivity. The local popula-
tions are also capable of responding to external current inputs denoted
as I and I; in equation 1-2, respectively. Importantly, such input can
come from other brain regions in a globally connected network (Fig. 1
right panel, dashed lines). This leads us to the global model. Formally,
we substitute I in the local model (equation 1) with a global input I
(equation 4),

ds¥ 50 . . .
£ =L (= SOt (Y - w0 S + 10Se) ) + o0
E
“
ast W . Db .
L= =D (w0, S - w) SO+ 1 ) +odl @ )
1

where Sg) and Sji) are the synaptic gating variable of the excitatory
and the inhibitory population of the it brain region respectively, and
& is a noise term scaled to an amplitude o. The state of all excitatory
populations is denoted as a vector §E, the ih element of which is Sg).
The global input to the i brain region depends on both its connectivity
with, and the ongoing state of, other brain regions,

(6)

N
12(Sp =6y c,;sY
j=1

J#i
where N denotes the total number of brain areas, C;; > 0 the long-range
structural connectivity from the j™ to the ith brain region and G is a

11

Neurolmage 259 (2022) 119401

global coupling parameter that controls the overall level of interaction
across brain regions. Since C;; is only intended to represent long-range
connectivity, we let C;; = 0 for any i = j to preclude recurrent connec-
tions. For the effects of G and C;; to be independently comparable, here
we impose a normalization condition on the matrix norm,

N
Il = max <Z |c,,-|> =1
j=1

Since the global coupling parameter G modulates the level of input
to each brain region, one would expect it to have comparable influence
on the local dynamics as I in the local model (equation 1).

O]

4.2. Computation of attractors and bifurcation diagrams

The repertoire of attractors and bifurcation diagrams Fig. 4) are
computed in MATLAB, utilizing the build-in function £solve. Given
a proper initial guess, £solve finds the coordinates of a nearby fixed
point of the dynamical system (e.g., the local model, equation 1-2, or
global model, equation 4-(5) and calculates the corresponding Jacobian
matrix. Given N model brain regions, the spectrum {4, }iﬁ , of the Jaco-
bian matrix is used to classify the fixed points and identify which ones
are attractors. The fixed point is a stable equilibrium if 4, is real and
negative for all k. The fixed point is associated with damped oscillation
if Re 4; <0 for all k£ and Im 4, # 0 for some k. The fixed point is asso-
ciated with a limit cycle if Re 4, > 0 and Im 4, # 0 for some k with the
additional criteria that after a small perturbation from the fixed point,
the time-average of the solution remains close to the fixed point. The
above three types of fixed points—a stable equilibrium, a stable spiral
(damped oscillation), a fixed point associated with a limit cycle (sus-
tained oscillation)—represent attractors in the present study. All other
types of fixed points are classified as unstable. For damped oscillation
and limit cycles in the local model, the frequency of the oscillation (Fig-
ure S1) is defined as | Im A, |/(27).

For the local model, a 2D dynamical system, the complete charac-
terization of all fixed points is relatively easy by searching exhaustively
through a grid of initial guesses (as for Fig. 4a-c). This approach be-
comes unfeasible when it comes to the global model due to the high
dimensionality. Thus, for the global model (Fig. 4d-i), we implemented
a recursive search: for each value of G, (1) find zeros of equation 4-6 us-
ing fsolve given a set of initial guesses that includes, if any, the zeros
for G — 6G (6G = 0.01 for the present study) in addition to a fixed set of
grid points; (2) sort the list of zeros obtained from (1) by the average of
Sg) ’s denoted as Sy; (3) use the middle points between consecutive zeros
in the sorted list as initial guesses; (4) continue to use middle points be-
tween past initial guesses as new initial guesses recursively until at least
one new zero is found or the recursion has reached a certain depth; (5)
append the new zero(s) to the list of zeros and repeat (2)-(5) until the
number of identified zeros exceeds a certain value. In the present study,
we limit the maximum depth in (4) to 8 and the maximum number of
zeros in (5) to 200. The set of zeros so obtained are the fixed points of
the dynamical system. Each fixed point is further classified using the re-
spective Jacobian matrix as described above to identify the attractors—a
subset of the fixed points forming the attractor repertoire.

For each set of structural parameters (G, C, wgg, wg;), We represent
the attractor repertoire as a M-by-N matrix,

) @ ™)
SE,l SE,I SE,I
e )
AG,C,wpp, wgy) =| E2 E2 E2 8)
O o) ™)
SE,M SE,M SE,M

where M is the number of attractors, and N is the number of brain
regions.

As parameters vary (e.g., G in Fig. 4d-i), the attractors form discrete
connected components (e.g., stripes in Fig. 4) in the product of the state
space and the parameter space. Attractors within the same connected
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component can be considered qualitatively equivalent, as they morph
into each other under continuous parameter change. Understanding the
relation between these connected components are critical to character-
izing phase transitions and bifurcations. It is thus meaningful to define
a discretized version of the attractor repertoire,

(1) @ V)
Sﬁ’)‘ sz’)] Sfivl>
. Ky Ky S
A@G,Cowgg, wgp) =| E2 £2 )
&) NE (V)
SE,M SE,M SE,M

where .SA‘(E])I is positive integer representing a discrete level of activation

which S(E”, belongs to (see Fig. 3 for toy examples). Each row vector
in equation 9 gives the multi-index of an attractor connected compo-
nent. In practice, the mapping between the continuous level Sg)l to the

discrete levels of S‘g), can be created by partitioning the continuous in-
terval [0,1] at the minima of the distribution of all Sg)i’s (see Section

S7 for examples). Examining the properties of A and A opens the door
to systematic characterization of the underlying dynamic landscape.

4.3. Quantifying cross-attractor coordination and energy gaps based on the
attractor repertoire

Given a discretized attractor repertoire A (equation 9), the cross-
attractor coordination matrix is an N-by-N matrix,

P(é-,l”‘igl) P("i-,]afi.,z) ﬂ(ff_l,/‘g.,N)

A, A, A, A, A, A,
P(G, C, wpp, 10g)) = p( ,2: SO ¢ 4,2: 2) p( 2 N)
p(A N A p(A N, A p(A. N A N)

(10)

where A,, ; denotes the j column of A and p(x, y) the Spearman’s corre-
lation between variables x and y (see Fig. 3 for toy examples, Fig. 5b for
a more elaborate example). Spearman’s correlation is chosen to reflect
the ordinal nature of the variable S’g)‘ P, = p(/f’,-,/f’ ;) gives the level
of cross-attractor coordination between model brain region i and j. The
use of the discretized attractor repertoire A ensures that coordination
matrix P is invariant within the same dynamic regime and only changes
during a bifurcation. Thus, matrix P connects the change of brain coor-
dination patterns to dynamical systems concepts such as bifurcation—a
qualitative change in the dynamic landscape of the model brain.

The coordination matrix P by itself does not explicitly concern how
difficult or energy consuming these cross-attractor movements are. To
incorporate energetic properties, we equip each attractor repertoire with
a sequence of energy gaps. We first order the rows of the attractor reper-
toire matrix A so that the row averages descend with the row index. The
row averages of the ordered repertoire matrix provide a sequence of en-
ergy levels,

Sk
Sgn

an

e(G,C,wgg, wgp) = S‘.

Eii
Sem
where Sp; = N~ Zj]il Ay, Sg;> Sgy for any i < M, and M is the
number of attractors. The corresponding energy gaps are

5:'5,1 - ~5jE,2
Sp2—Sg3
Ae(G,Cowpp, we)=| -~ (12)
EE £l SE,i—l - SE,i
SE,M—I - SE,M
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where Ae; = S;_| — S is the energy gap between the (i — D" and ih
attractor in the repertoire. Physically, each energy gap Ae; can be inter-
preted as the energy cost associated with keeping additional x% synaptic
channels open. Synaptic transmission is a major energy consumer in the
brain (Harris et al., 2012). For example, the opening of NMDA receptors
are associated with presynaptic, postsynatpic, and astrocytic costs, es-
timated to be roughtly 70k ATPs per vesicle released and 103 ATPs per
action potential generated (Attwell and Laughlin, 2001). The sequence
of energy gaps can be used to partition the attractor repertoire into sub-
matrices. For example, if Ae; is the maximum energy gap, one can split
A (and its discretized version A) into a repertoire above the energy gap

_ "
13)

A+(G,C,WEE’WE])= ol

and a repertoire below the energy gap

A_(G,C, wEvaEI)= 5 a4

where 4;. is the i row of the ordered repertoire matrix A. Each of
the sub-repertoires A, and A_ is associated with its own cross-attractor
coordination matrix, say, P, and P_ (equation 10). P, and P_ can be
considered as the “energy-constrained” coordination patterns where the
model brain is not allowed to cross the energy gap Ae;. The same line
of analysis is applicable to a sub-network of the model brain (e.g., the
default mode network) by constructing a reduced repertoire matrix that
only contains a subset of the columns in A. These selected columns map
to the brain regions within the sub-network. This series of analysis ap-
plied to attractor repertoire matrices and sub-matrices provides a sys-
tematic and simple way to characterize brain dynamic landscape and
inter-regional coordination.

4.4. Estimating within-attractor coordination through simulations

Within-attractor coordination is estimated using conventional meth-
ods of numeric simulation. In the present work, for each attractor in
the repertoire, the dynamical system equation 4-(6) is integrated using
stochastic Heun’s method, with a time step of 1 ms, a moderate level of
noise ¢ = 0.01 and a duration T = 864 s (14 min 33 s to match the hu-
man data (Van Essen et al., 2013)). The exact coordinates of the attrac-
tor are used as the initial conditions such that the simulated dynamics
reflects the noise-driven exploration near that attractor. Conventional
correlation analysis is then applied to the simulated time series of the
excitatory populations (Sg)’s) to obtain the functional connectivity ma-
trix (e.g., Fig. 5¢). Spearman’s correlation is used in accordance with the
computation of cross-attractor coordination matrix (P, equation 10).

4.5. Data and methods of analysis

4.5.1. Human structural data

The human structural connectome used in the present study is
from the S1200 Release from the Human Connectome Project (HCP)
(Van Essen et al., 2013). The average connectome of 11 unrelated sub-
jects were used for the first qualitative analysis (it has been shown
that averaging over 5 subjects is sufficient; (see Deco et al. 2013b;
Hansen et al. 2015), while the individual connectome of 100 subjects ob-
tained from a previous study (Civier et al., 2019) were used for the sec-
ond quantitative analysis. For both analyses, the subject-level connec-
tome data are based on the Desikan-Killiany parcellation (Desikan et al.,
2006) obtained from Civier et al. (2019), retaining the 66 ROIs used in
Hagmann et al. (2008) and Deco et al. (2013b) (Fig. 1b). The original dif-
fusion imaging (dMRI) data were obtained using a customized Siemens
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3T scanner at Washington University in St. Louis, with a standard 32-
channel head coil, with TR = 5520 (ms), TE = 89.5 (ms), 1.25 (mm)
isotropic voxels, b=1000, 2000, 3000 (s/mm?2). T1 images were ob-
tained using 3D magnetization-prepared rapid gradient echo sequence
(MPRAGE) with TR = 2400 (ms), TE = 2.14 (ms), and 0.7 (mm) isotropic
voxels. The HCP minimally processed data were further processed us-
ing MRtrix3, including bias-field correction, multi-shell multi-tissue con-
strained spherical deconvolution with a maximum spherical harmonic
degree 8. 10 million probabilistic streamlines were generated for each
subject using the 2"-order Intergration over Fibre Orientation Distri-
butions algorithm (iFOD2) (Tournier et al., 2010) and anatomically-
constrained tractography (ACT) (Smith et al., 2012) (FOD amplitude
threshold = 0.06, step size = 0.625 mm). Each streamline was assigned a
weight using spherical-deconvolution informed filtering of tractograms
(SIFT2) (Smith et al., 2015). Connection strengths between ROIs are
summed weights of the associated streamlines. Intra-ROI connections
are removed. Subjects’ connectivity matrices are normalized according
to equation 7 before and after averaging.

4.5.2. Human functional data
Human functional connectivity used in the present study is estimated
using the resting-state fMRI (rsfMRI) data of the same subjects from the
Human Connectome Project (Van Essen et al., 2013) as aforementioned
ones from the structural connectivity. rsfMRI scans were acquired using
EPI sequences with TR = 720 (ms), TE = 33.1 (ms), flip angle = 52°,
voxel size = 2.0 (mm, isotropic), multiband factor = 8. Four runs of
rsfMRI scan were obtained from each subject in 2 separate days (2 runs
in each day with opposite phase-encoding direction: RL and LR). Each
run last 14 min 33 s (1200 TR).
For the first analysis,
loaded from the Human

unprocessed data were down-

Connectome  Project database
(https://db.humanconnectome.org) and preprocessed using fM-
RIPrep 1.4.0 (Esteban et al., 2018b; Esteban et al., 2018a;
RRID:SCR_016216), which is based on Nipype 1.2.0 (Gorgolewski et al.,
2011; Gorgolewski et al., 2018; RRID:SCR_002502). First, a reference
volume and its skull-stripped version were generated using a custom
methodology of fMRIPrep. A deformation field to correct for susceptibil-
ity distortions was estimated based on two echo-planar imaging (EPI)
references with opposing phase-encoding directions, using 3dQwarp
(Cox and Hyde, 1997) (AFNI 20160207). Based on the estimated
susceptibility distortion, an unwarped BOLD reference was calculated
for a more accurate co-registration with the anatomical reference.
The BOLD reference was then co-registered to the Tlw reference
using bbregister (FreeSurfer) which implements boundary-based
registration (Greve and Fischl, 2009). Co-registration was configured
with nine degrees of freedom to account for distortions remaining in
the BOLD reference. Head-motion parameters with respect to the BOLD
reference (transformation matrices, and six corresponding rotation
and translation parameters) are estimated before any spatiotemporal
filtering using mcflirt (FSL 5.0.9, Jenkinson et al., 2002). The
BOLD time-series were resampled to the fsaverage surface space.
Several confounding time-series were calculated including framewise
displacement (FD), DVARS and three region-wise global signals. FD
and DVARS were calculated for each functional run, both using their
implementations in Nipype (following the definitions by Power et al.,
2014). The three global signals were extracted within the CSF, the WM,
and the whole-brain masks.

Nuance regressions were performed on detrended, preprocessed
BOLD time series in the fsaverage space (FreeSurfer), following proce-
dures in Power et al. (2014). Regressors include 6 motion parameters,
CSF signal, WM signal, and their first derivative and second power.
Frames with FD>0.2 mm are censored. Spline-interpolated signals are
band-pass filtered between 0.009 and 0.08 Hz, and averaged within ROIs
based on the Desikan-Killiany parcellation (Desikan et al., 2006). 66 Re-
gions in Hagmann et al. (2008) are retained and ordered according to
Deco et al. (2013b) (Fig. 1b). Functional connectivity between ROIs are
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estimated using Spearman correlation between z-scored time series for
each rsfMRI run of each subject. The connectivity matrices are then av-
eraged across all runs/subjects in Day 1 and in Day 2 separately. The
average functional connectivity matrix from Day 1 is used in all compar-
isons with the model. The average functional connectivity matrix from
Day 2 is used to assess the reliability of the estimation.

For the second analysis, an alternative preprocessing pipeline that
is standard for individual rsfMRI preprocessing was applied. Specifi-
cally, minimally preprocessed rsfMRI volumetric data from the HCP
database was downloaded and further denoised through application
of a published spatial independent component rejection procedure
(Glasser et al., 2013; Griffanti et al., 2017; Smith et al., 2013). The re-
sulting rsfMRI timeseries was then converted to ROI space by averag-
ing voxels part of the Desikan-Killiany atlas in volume space (Klein and
Tourville, 2012). Relative to the list in Table S1, there were six miss-
ing ROIs, which are the left and right temporal pole, the left and right
frontal pole, and the left and right bank of the superior temporal sulcus.
Similar to the case with the 11 subjects, there were 4 runs per subject (2
runs with opposite encoding for 2 separate days). To calculate the func-
tional connectivity, ROI time series were z-scored and then correlated
with Spearman correlation between each pair of ROIs. The resulting 4
connectivity matrices were averaged to obtain one final connectivity
matrix per subject.

4.5.3. Individual subject simulation and model fitting

To find the optimal human-model fitting on an individual basis,
simulations were run with one representative set of local parameters
(Wgg =2, Wg; = 1), while the global coupling parameter was varied
from 1.7 to 3.0 with step sizes of 0.1. This set of parameter configura-
tions were chosen with considerations for the run time while capturing
the individual variability for the optimal value of G. Additional details
of the simulation, including computation of the within and cross attrac-
tor coordination, and energy gaps between attractors, were identical to
the analysis of the 11 subject averaged data.

Spearman’s correlation was used to quantify the model-human cor-
relation. The optimal G parameter for each individual was determined
based on the maximum correlation for the cross-attractor coordination.
Within-attractor coordination matrices were determined for individual
attractors at that optimal G and used to find the highest model-human
correlation for within-attractor coordination. To compare the model fit
between within and cross-attractor coordination on an individual level,
a paired t-test was applied between the model-human correlation for the
two across the 100 individuals.

4.5.4. Correlating with measures of fluid intelligence

An abbreviated 24-items version of the Raven’s Progressive Matrix
Test Form A was used for evaluating fluid intelligence (Bilker et al.,
2012; Duncan et al., 2000) and scored with the number of correct
responses (PMAT24_A_CR). Spearman’s correlation was calculated be-
tween model parameters and PMAT24_A_CR while controlling for age
and sex. Model parameters of interest include the maximum correlation
value, the associated optimal G parameter, and the maximum energy
gap at the optimal G.
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