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a b s t r a c t 

Despite substantial progress in the quest of demystifying the brain basis of creativity, several questions remain 

open. One such issue concerns the relationship between two latent cognitive modes during creative thinking, 

i.e., deliberate goal-directed cognition and spontaneous thought generation. Although an interplay between de- 

liberate and spontaneous thinking is often implicated in the creativity literature (e.g., dual-process models), a 

bottom-up data-driven validation of the cognitive processes associated with creative thinking is still lacking. 

Here, we attempted to capture the latent modes of creative thinking by utilizing a data-driven approach on 

a novel continuous multitask paradigm (CMP) that widely sampled a hypothetical two-dimensional cognitive 

plane of deliberate and spontaneous thinking in a single fMRI session. The CMP consisted of eight task blocks 

ranging from undirected mind wandering to goal-directed working memory task, while also included two widely- 

used creativity tasks, i.e., alternate uses task (AUT) and remote association task (RAT). Using eigen-connectivity 

(EC) analysis on the multitask whole-brain functional connectivity (FC) patterns, we embedded the multitask FCs 

into a low-dimensional latent space. The first two latent components, as revealed by the EC analysis, broadly 

mapped onto the two cognitive modes of deliberate and spontaneous thinking, respectively. Further, in this low- 

dimensional space, both creativity tasks were located in the upper right corner of high deliberate and spontaneous 

thinking (creative cognitive space). Neuroanatomically, the creative cognitive space was represented by not only 

increased intra-network connectivity within executive control and default mode network, but also by higher cou- 

pling between the two canonical brain networks. Further, individual differences reflected in the low-dimensional 

connectivity embeddings were related to differences in deliberate and spontaneous thinking abilities. Altogether, 

using a continuous multitask paradigm and a data-driven approach, we provide initial empirical evidence for the 

contribution of both deliberate and spontaneous modes of cognition during creative thinking. 
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. Introduction 

It is commonly agreed that creativity refers to the ability to produce

ork that is both novel and appropriate ( Sternberg and Lubart, 1999 ).

s one of the most extraordinary capacities of the human brain, cre-

tivity drives the development of our society. From art and design to

cience and engineering, we often marvel at people’s ingenuity. Given

ts central role, there has been an ever-growing interest in studying the

eural basis of creative cognition. Although initial neuroimaging stud-

es focused on revealing the contribution of individual brain regions

o different aspects of creative thinking ( Dietrich, 2004 ; Saggar et al.,
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017 , 2015), in recent years, this focus has shifted towards examin-

ng the interaction between multiple brain regions (as a network) dur-

ng creative thinking ( Beaty et al., 2019 , 2017 ; Maillet et al., 2019 ;

aggar et al., 2019 ). However, data-driven evidence is still needed to

onfirm whether creative thinking depends on a single brain network

r an interplay (i.e., functional interaction/coupling) between multiple

etworks. 

As a complex high-level cognitive phenomenon, creativity likely de-

ends on a range of other lower- and higher-order processes, such as per-

eption, working memory, semantic memory, and sustained attention

 Dietrich, 2004 ; Lee and Therriault, 2013 ; Smeekens and Kane, 2016 ).
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Fig. 1. Qualitative mapping of multitask data to a hypothetical cognitive space 

with two putatively orthogonal dimensions of deliberate and spontaneous think- 

ing. We hypothesize that tasks such as mind wandering would occupy the upper 

left quadrant as they are based on spontaneous processing with a minimum 

amount of deliberate control. In contrast, tasks with a high level of deliberate 

thought (2-back working memory or theory of mind task) would occupy the 

lower right quadrant as they are based highly on deliberate thinking. Other 

tasks like emotion classification, guessing, and visuomotor could be mapped in 

between deliberate and spontaneous thinking. Lastly, we hypothesized that if 

the creativity tasks (alternate uses and remote association) require both delib- 

erate and spontaneous thinking, they should occupy the top right quadrant. 
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urther, an interplay (or coupling) between two latent cognitive modes

as been suspected during creative cognition, i.e., modes of sponta-

eous/implicit thinking and deliberate/explicit thinking. This interplay

as been previously referred to as a dual-process model ( Barr et al.,

015 ; Christoff et al., 2016 ; Dietrich, 2004 ; Finke, 1996 ; Sowden et al.,

015 ). Specifically, previous data suggest that while creative insights are

ften accompanied by defocused attention through spontaneous think-

ng ( Baird et al., 2012 ; Eysenck, 1995 ; Gable et al., 2019 ; Zabelina et al.,

015 ), creativity can also stem from methodical problem solving via de-

iberate thinking ( Benedek et al., 2014 ; Boden, 1998 ; Frith et al., 2020 ;

usbaum and Silvia, 2011 ). 

The interplay between deliberate and spontaneous thinking during

reative cognition is hypothesized to correspond to two canonical brain

etworks: the executive control network (ECN) and the default mode

etwork (DMN), respectively ( Beaty et al., 2016 ; 2015 ; Ellamil et al.,

012 ). The ECN is typically elicited by tasks requiring externally driven

ttention, while the DMN is typically elicited by internally driven cog-

ition. In the context of creativity, the ECN (or fronto-parietal network

FPN)) is thought to support goal-directed and strategic cognition re-

uired to guide and direct the creative thought process, inhibiting com-

on ideas and strategically searching memory for task-relevant unique

olutions ( Beaty et al., 2016 ). The DMN, in contrast, is thought to sup-

ort the spontaneous generation of candidate ideas from memory and

magination, consistent with its role in episodic/semantic memory re-

rieval and mental simulation ( Buckner et al., 2008 ). The putative cog-

itive processes of ECN and DMN broadly map onto dual-process models

f creativity that emphasize spontaneous thought and deliberate control

 Beaty et al., 2015 ; Jung, 2013 ). 

Together, these studies provide insights into the putative roles of

MN and ECN in spontaneous and deliberate cognition during creative

erformance. However, it remains unclear as to what degree does the

eliberate (via ECN) and spontaneous (via DMN) modes of thinking en-

age during creativity and whether such recruitment is comparable to

hat done during prototypical tasks for each mode of thinking. In other

ords, it is unclear whether, during creative thinking, the amount of de-

iberate (or spontaneous) thinking recruited by the brain is comparable

o that of being employed during a working memory task (or at rest). We

rgue that examining such evidence via a data-driven approach might

rovide direct evidence for the classic dual-process theories of creativ-

ty. 

To tackle this issue, using functional Magnetic Resonance Imaging

fMRI), we developed a novel continuous multitask paradigm (CMP)

 with seven cognitive task blocks and a resting-state block, in a

ingle fMRI session. Using our CMP, we aimed at sampling a wide

ange of cognitive processes along a hypothetical two-dimensional plane

f deliberate and spontaneous thinking. As shown in Fig. 1 , we in-

luded two well-established creative tasks (i.e., alternate uses task

AUT) and remote associates task (RAT)), five other non-creative task

locks, and a resting-state block. Based on the theoretical framework

y Christoff et al. (2016) , we hypothesized that the two latent cognitive

rocesses would be differentially recruited by these eight task blocks.

or example, tasks such as 2-back working memory that require a higher

evel of deliberate thought would occupy the lower right quadrant, i.e.,

elying heavily on deliberate thinking while inhibiting spontaneity. Sim-

larly, rest or mind-wandering is likely to recruit spontaneous thinking

ith minimum deliberate control (top left quadrant). Other non-creative

asks, with a medium level of deliberate thought, would reside in the

ognitive space between resting-state and working memory. Critically,

ased on the dual-process theory, we hypothesized that creative cogni-

ion would require both deliberate and spontaneous thinking and that

ngagement of these modes of thinking would be comparable to the

ecruitment during prototypical cognitive tasks for each mode. Lever-

ging information from a wider variety of cognitive tasks, we aimed to

btain a holistic overview of how creative cognition is related to other

ognitive processes. Using our CMP, we aimed at identifying the latent

ognitive axes that may underlie creative cognition. Similar approaches
2 
ave been recently used to assess the neural correlates of ongoing cog-

ition ( Gonzalez-Castillo et al., 2015 ; Krienen et al., 2014 ). 

We performed the eigen-connectivity (EC, Leonardi et al., 2013 )

nalysis on the task-related whole-brain functional connectivity (FC)

atterns to reveal shared latent connectivity structures across tasks and

o validate the involvement of the two hypothetical latent cognitive pro-

esses (shown in Fig. 1 ). We further validated the hypothesis by examin-

ng individual differences in the latent cognitive axes and corresponding

ehavioral domain. 

. Methods 

.1. Participants 

Thirty-two participants (30.4 ± 5.4 years, 13F, 4 left-handed) took

art in our study. All participants reported no history of neurological dis-

rder or psychotropic medication, with normal or corrected-to-normal

ision. The study was approved by Stanford University’s Institutional

eview Board, and all participants gave written consent. Detailed de-

ographic information can be found in Supplemental Table S1. 

.2. Neuropsychological assessments 

A set of behavioral assessments were conducted outside the MR scan-

er to measure participants’ creativity and executive function as proxies

or spontaneous/deliberate thinking. Below, we briefly introduce these

ssessments. 

.2.1. Creativity 

The Torrance Test of Creative Thinking (TTCT-Figural;

orrance, 1972 ) is one of the most widely accepted tests to mea-

ure divergent thinking ability in the visual form. This game-like test

an engage participants’ spontaneous creativity while being unbiased

n terms of race, culture, socioeconomic status, gender, and language

 Kim, 2006 ). Participants were given 30 min to complete three ac-

ivities in the TTCT-Figural assessment, i.e., picture construction,

icture completion, and repeated figures of lines or circles. The TTCT-

igural assessments were scored by the Scholastics Testing Service, Inc

 http://ststesting.com ). 

http://ststesting.com
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Fig. 2. A graphic summary of the EC analysis pipeline. (a) The eight task-specific FC ( 𝐹 𝐶 𝑡𝑎𝑠𝑘 ) and a baseline-FC ( 𝐹 𝐶 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ) were computed and then vectorized for 

each participant. The baseline-FC was computed across the entire scan time. (b) For each participant, the 𝐹 𝐶 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 was regressed out from task-specific FCs using 

linear regression. (c) Baseline-removed FC patterns ( 𝐹 𝐶 𝑟𝑒𝑠𝑖𝑑 ) were then concatenated across tasks and participants. (d) 𝐹 𝐶 𝑟𝑒𝑠𝑖𝑑 were then submitted to singular value 

decomposition (SVD). The columns of orthonormal eigenvectors U (or equally principal components) were converted to matrix form, termed as eigen-connectivity 

(EC) patterns. 
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.2.2. Executive function 

Participants’ executive function was assessed using the Stroop Color-

ord Interference Test (CWIT), a subtest of Delis–Kaplan Executive

unction System (D-KEFS; Delis et al., 2001 ). CWIT consists of four parts:

olor naming, word reading, inhibition, and inhibition/switching. 

.3. Imaging data 

.3.1. Imaging acquisition 

Participants were scanned using a GE 3T Discovery MR750

canner with a 32-channel Nova Medical head-coil at the Stan-

ord Center for Cognitive and Neurobiological Imaging. Functional

can parameters used are as follows: 1183 volumes, repetition time

R = 0.71 s, echo time TE = 30 ms; flip angle FA = 54°, field of view

OV = 220 × 220 × 144 mm, isotropic voxel size = 2.4 mm, #slices = 60,

ultiband acceleration factor = 6. High-resolution T1-weighted struc-

ural images were also collected with FOV = 190 × 256 × 256 mm,

A = 12°, TE = 2.54 ms, and isotropic voxel size = 0.9 mm. 

.3.2. Continuous multitask paradigm 

A novel continuous multitask paradigm (CMP) was conducted over

wo runs (duration for each run was ∼14 min). The CMP included seven

ognitive task blocks and a resting state block ( Table 1 and Supplemen-

al Fig. S1). The cognitive tasks were chosen to sample along the two-

imensional hypothetical plane of deliberate and spontaneous thinking.

ach task block lasted 90 s with a 12 s instruction between two task

locks. A brief summary of the task blocks is provided in Table 1 . The
3 
MP was repeated in the second run in counterbalanced order with dif-

erent sets of stimuli/questions but fixed for all participants. Participants

ere first familiarized with the rules of each task before entering the

canner. For the two creative tasks, alternative uses task (AUT) and re-

ote associates task (RAT), we recorded participants’ answers after the

can, consistent with previous studies ( Beaty et al., 2019 ; Benedek et al.,

019 ). 

.3.3. Preprocessing 

We discarded the first 12 frames of functional data, after which we

pplied a standardized preprocessing pipeline using fMRIprep (v1.2.1,

steban et al., 2019 ). The functional data underwent motion correc-

ion, slice timing correction, susceptibility distortion correction, and

ere normalized to the Montreal Neurological Institute (MNI152) tem-

late. Overall, we excluded 7 participants due to technical difficulty (3),

oor structural registration (1), excessive motion (1; mean framewise

isplacement > 0.2 mm); and participants’ dropping out or inability to

can (2). The later analysis included 25 participants. 

For the remaining 25 participants, we removed nuisance signal by re-

ressing out the physiological noise (white matter and CSF) and motion-

elated noise using the Volterra expansion of 6 motion parameters and

 physiological signals ( Friston et al., 1996 ): [ 𝑅 𝑅 

2 𝑅 𝑡 −1 𝑅 

2 
𝑡 −1 ]. Along

ith the nuisance signal regression, detrending and temporal filtering

etween 0.008 and 0.18 Hz were also simultaneously performed using

FNI 3dTproject . Despiking was performed using 3dDespike , and spatial

moothing was carried out using Gaussian kernel with FWHM = 6 mm.

 parcellation with 375 regions of interest (ROIs) were defined based
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Table 1 

Task batteries included in the continuous multitask paradigm. ITI: inter-trial interval. 

Name Task description #Trials/Duration Reference 

Alternative uses task (AUT) Silently name uncommon uses of everyday objects (e.g., 

bricks) and press a button when you think of one. 

3 trials; each trial lasted for 30 s Mayseless et al. (2015) 

Emotion task (Emotion) Match one of two simultaneously presented 

emotionally-charged faces (angry or afraid) with an 

identical target face displayed below. 

30 trials; each trial lasted 3 s Hariri et al. (2002) 

2-back working memory task (WM) Match geometric shapes with the one presented two shapes 

before (5 shapes in total). 

30 trials; each trial lasted 3 s Gonzalez-Castillo et al. (2015) 

Theory of mind task (ToM) Read a story describing false beliefs and answer a yes/no 

question 1 . 

5 trials; each trial lasted 18 s. Each trial 

consisted of 12 s for reading, 5 s for 

answering and 1 s ITI 

Dodell-Feder et al. (2011) 

Visuomotor task (VisMot) Visually cued finger-tapping of a red target on a flashing 

checkboard. 

3 trials; each trial lasted 30 s. Within each 

trial 18 s for stimuli and 12 s ITI 

Drobyshevsky et al. (2006) 

Guessing task (Guessing) View a “? ” and guess who “hides behind ” the question 

mark (baby or adult). Receive monetary feedback 

indicating whether the answer is correct. 

10 trials; each trial lasted 9 s. Within each 

trial, 3 s for guessing, 2 s for feedback and 

4 s ITI 

Delgado et al. (2000) 

Remote Associates Task (RAT) Produce a fourth related word based on the three cue 

words 2 . 

9 trials; each trial lasted 10 s Mednick (1962) 

Mind wandering (MW) Relax and fixate at the crosshair. 90 s duration Raichle et al. (2001) 

1 ToM example: Story: Laura didn’t have time to braid her horse’s mane before going to camp. While she was at camp, William brushed Laura’s horse and braided 

the horse’s mane for her. Yes/No question: Laura returns assuming that her horse’s hair isn’t braided. 
2 RAT example: Cue: dream – break – light. Answer: day. 
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n the parcellation previously used by Shine et al. (2019) , which con-

ains 333 cortical parcels from the Gordon atlas ( Gordon et al., 2016 ),

4 subcortical regions from the Harvard–Oxford subcortical atlas (bi-

ateral thalamus, caudate, putamen, ventral striatum, globus pallidus,

mygdala, and hippocampus), and 28 cerebellar regions from the SUIT

tlas ( Diedrichsen et al., 2009 ) to ensure the whole-brain coverage. Af-

er dropping 12 ROIs with fewer than 10 voxels, the time series were

xtracted from the remaining 363 ROIs by first converting the residual

ignal to percentage signal change (i.e., voxel intensity was divided by

he voxel mean) and then computing the average signal within each

OI. The two functional runs were concatenated, and time points with

he framewise displacement greater than 0.5 mm were excluded from

urther analysis (time points discarded = 1.62% ± 2.32%). 

.3.4. Estimating regularized functional connectivity (FC) 

Sparse graphical models have been increasingly adopted by neu-

oimaging researchers in recent years ( Allen et al., 2014 ; Rosa et al.,

015 ; Smith et al., 2011 ; Xie et al., 2019 ). Here, we employed graphical

ASSO ( Friedman et al., 2007 ) to estimate functional connectivity using

he R package ‘glasso’. In short, graphical LASSO encourages a sparse

olution of the task-specific precision matrix Θ (or inverse covariance

atrix) by maximizing the following log-likelihood function 𝐿 1 

 1 = log 𝑑𝑒𝑡 Θ − 𝑡𝑟 ( 𝑠 Θ) − 𝜆‖Θ‖1 , (1)

here 𝑑𝑒𝑡 denotes the matrix determinant; 𝑡𝑟 denotes the matrix trace;

 represents the empirical covariance matrix; 𝜆 is a non-negative regu-

arization parameter provided by users; ‖Θ‖1 indicates the L1 penalty

n Θ. 

A zero entry in the precision matrix reflects conditional indepen-

ence between the signals of two brain regions, after regressing out all

ther ROI timeseries. A higher 𝜆 yields a sparser representation at the

ost of goodness-of-fit. To achieve a good balance between the sparsity

nd goodness-of-fit, we tested a range of 𝜆 (0 - 0.2, step size = 0.02) and

ound an optimal 𝜆 (0.06 & 0.08) for each individual that maximizes the

ollowing log-likelihood 𝐿 2 ( 𝜆) 

 2 ( 𝜆) = 

𝐾 ∑
𝑘 =1 

log 𝑑𝑒𝑡 Θ𝑘 − 𝑡𝑟 
(
𝑠 0 Θ𝑘 

)
. (2)

Here, 𝑠 0 is the empirical covariance matrix estimated using all the

ime points, and 𝐾 is the total number of tasks. This objective function
4 
as chosen given the expectation that task-specific FCs should be sim-

lar across multiple cognitive tasks for a given participant ( Finn et al.,

015 , also see Supplemental Fig. S2). Upon choosing the optimal reg-

larization parameter, we estimated the regularized covariance matrix

nd subsequently converted it to regularized whole-brain FC, followed

y Fisher-z transformation. Here, we chose not to use different lambdas

or each task mainly because we did not want different levels of sparsity

o drive the task-specific connectivity profiles. 

.3.5. Multitask eigen-connectivity analysis 

To delineate the latent cognitive processes sampled by the CMP, we

xtracted the latent FC structure from the multitask-FC using eigen-

onnectivity (EC) analysis developed by Leonardi et al. (2013) . The

C analysis was originally developed to study time-varying FC dynam-

cs during rest. Briefly, after computing task-specific FC matrices, we

rst vectorized the upper triangular FC matrices and regressed out the

ubject-specific baseline-FC to better reveal task-specific FC patterns

 Xie et al., 2018a ). Here, baseline-FC was characterized as the FC pattern

stimated using time points from all eight task blocks for each partici-

ant. We then concatenated the residual FC vectors across participants

nd tasks, resulting in a 65,703 × 200 group-level residual FC matrix

 𝐹 𝐶 𝑟𝑒𝑠𝑖𝑑 ) across 8 task blocks and 25 participants. Singular value de-

omposition (SVD) was applied on the group-level 𝐹 𝐶 𝑟𝑒𝑠𝑖𝑑 . 

 𝐶 𝑟𝑒𝑠𝑖𝑑 = 𝑈Σ𝑉 𝑇 , (3)

here 𝑈 is a 65,703 × 200 unitary matrix and the columns of 𝑈 are

rthonormal eigenvectors; 𝑉 is a 200 × 200 unitary matrix; Σ is a

00 × 200 diagonal matrix of singular values. 

The column vectors of 𝑈 were reshaped back into the matrix form

#ROIs × #ROIs). The first few column vectors of 𝑈 , explaining large

ariance, can be used to define the low-dimensional connectivity-based

mbedding that is shared across all eight task blocks. The latent embed-

ings were referred to as EC patterns by Leonardi et al. (2013) when

tudying dynamic functional connectivity. The EC weights correspond

o the projections of these ECs, i.e., columns of 𝑉 multiplied by the sin-

ular values of Σ. Given our goal to anchor the cognitive processes into

ower dimensions that can be visualized, we focused on the first two ECs

hat explained the most variance in the group-level 𝐹 𝐶 𝑟𝑒𝑠𝑖𝑑 , as well as

he corresponding weights, in order to match the latent cognitive pro-

esses of interest. 
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Fig. 3. (a) Visualization of the first two eigen-connectivity (EC) patterns with intra-network connectivity highlighted. EC1: the upper-triangle, EC2: the lower-triangle. 

Aud: auditory; Vis: visual; CinO: cingulo-opercular; CinP: cingulo-parietal; DMN: default mode network; FPN: frontal-parietal network; DAN: dorsal attention network; 

VAN: ventral attention network; RsT: retrosplenial temporal; SM: sensorimotor; SN: salience network; SC: subcortical; CB: cerebellum; None: network not specified. 

The network assignment of cortical ROIs mostly follows the Gordon atlas ( Gordon et al., 2016 ). (b) A line plot of the average intra-network coupling strength of 

major large-scale functional networks. 
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1 It should be noted that participants spent 40% of the time during the visuo- 

motor task on fixation in between trials, which could have explained VisMot-FCs 

being projected together with MW. 
. Results 

.1. Characterizing the latent connectivity dimensions as revealed by EC 

nalysis 

We projected vectorized residual task-FCs to a low-dimensional

pace using the EC analysis. Here, we focused on the first two dimen-

ions/ECs in terms of the variance explained, per our hypothesis. Fig. 3 a

hows EC patterns for the first two ECs. The strength of intra-network

oupling of the first two ECs is shown as a line chart in Fig. 3 b. Each

C pattern can be understood as a latent low-dimensional embedding

r spatial mode that captures shared variations across the multitask

Cs. We employed the statistical enrichment analysis ( Maron-Katz et al.,

016 ) to examine whether a type of connection (e.g., DMN-FPN) is more

revalent than what would be expected by chance. After retaining 5%

dges with the largest positive/negative edge strength, we conducted

 degree preserving randomization on EC patterns, and compared the

ntra-/inter-network degree between the real and permutated EC pat-

erns using 2000 permutation tests, followed by FDR correction. Focus-

ng on DMN and FPN, we found EC1 is associated with significantly

ore negative edges within-DMN and between DMN and FPN, while

ignificantly more positive edges within FPN. For EC2, we observed sig-

ificantly more positive edges within DMN and between DMN and FPN.

In sum, the latent space revealed by our multitask EC analysis sug-

ested two dominant latent dimensions: one dimension for deliberate

hinking (characterized by high intra-ECN connectivity) and the other

or spontaneous thinking (characterized by high intra-DMN connectiv-

ty). 

.2. Embedding tasks into the latent cognitive space 

To better examine the relationship between different cognitive tasks

ith respect to the revealed deliberate and spontaneous EC dimensions,

e projected task-FCs through the first two ECs. Noticeably, and as hy-

othesized, the task-FCs projected into the low-dimensional plane were

eparable and highly resembled the hypothetical cognitive space (shown

s an inset in Fig. 4 a). Specifically, we observed that the task-FCs associ-

ted with two creative tasks (i.e., AUT and RAT) were projected together

n the upper right quadrant. The mind wandering (MW) together with

he visuomotor (VisMot) task were observed mostly in the upper left
5 
uadrant, as both required minimum deliberate control. 1 Working mem-

ry (WM) and theory of mind (ToM) tasks were also projected together

o the lower right quadrant. These two tasks were arguably among the

ost cognitively demanding tasks while requiring very limited sponta-

eous thinking. Further, based on our hypothesis, we grouped the tasks

nto four types: deliberate (WM and ToM), spontaneous (MW), moder-

te (Emotion, Guessing, and VisMot), and creative (AUT and RAT) tasks.

e found the projections of creativity tasks to be high on EC1 (reflect-

ng deliberate thinking) and on EC2 (reflecting spontaneous thinking)

 Fig. 4 b-c). Altogether, we provided data-driven evidence that creative

ognition does require recruitment of both deliberate and spontaneous

hinking and that recruitment is comparable to that of prototypical cog-

itive tasks for each mode of thinking, respectively. 

Additionally, we showed EC3 to EC10 and the low-dimensional pro-

ection using the first 3 ECs in the Supplemental Materials (Fig. S3).

e also quantitatively evaluated the task separability of weights of all

00 ECs using one-way ANOVA given the task labels. We found ECs be-

ond the first two can inform us of underlying tasks, where EC weights

rom one task were significantly different from the rest (FDR-corrected

 < 0.05, Supplemental Fig. S4). To ensure that the EC patterns ob-

erved here were not due to chance or noise, we performed a valida-

ion analysis. We simulated surrogate data using phase randomization

nd repeated the EC analysis ( Handwerker et al., 2012 ). We compared

C components from the real data with those from the surrogate data

n terms of variance explained. A one-sample t -test was used to assess

hether the variance explained by a given EC had a significantly higher

ean from the real data as opposed to the surrogate data. We found that

he first 28 EC components explained significantly more variance in the

eal data (FDR corrected p < 0.05, Supplemental Fig. S4), while the EC

atterns from the surrogate data also lacked the structure observed in

C patterns extracted from the real data. 

.3. Revealing the functional architecture of creative cognition 

To further understand the functional architecture of the creative cog-

ition space, we examined the aggregated functional connectome across



H. Xie, R.E. Beaty, S. Jahanikia et al. NeuroImage 243 (2021) 118531 

Fig. 4. (a) Low-dimensional projection of task-FCs with the first two EC components, color-coded based on task labels. Each symbol represents a projection of a 

task FC, for a total of 200 symbols (25 per participant over eight tasks). Inset: the hypothetical cognitive space spanning across two putative cognitive axes, i.e., 

deliberate thinking (EC1) and spontaneous thinking (EC2). (b-c) Graphical summary of low-dimensional projections along with the EC1 and EC2, grouped based on 

the hypothesis. Creativity tasks: AUT and RAT; deliberate tasks: WM and ToM; spontaneous task: MW; tasks requiring moderate level of spontaneous and deliberate 

thinking: Emotion, Guessing, and VisMot. 

Fig. 5. (a) The aggregated EC combining EC1 and EC2. (b) Ten ROIs with the most positive node strength. (c) Ten ROIs with the most negative node strength. The 

node size is proportional to the node strength, and the network label of each ROI is color-coded. 

d  

s  

i  

b  

u  

c  

E  

i  

n  

a  

f

 

d  

a  

e  

p  

f  

a  
eliberate (EC1) and spontaneous (EC2) latent dimensions. We hypothe-

ized that given the observation that creative tasks were both embedded

n the top right corner of the EC latent space, suggesting an interplay

etween both deliberate (EC1) and spontaneous (EC2) modes, a better

nderstanding of the functional architecture of creative cognitive space

an be acquired by examining the aggregated connectivity pattern of

C1 and EC2. The aggregated pattern of EC1 and EC2, through numer-

cal addition, is shown in Fig. 5 a. Besides the expected enhanced intra-

etwork coupling within default mode and fronto-parietal networks, we
6 
lso observed high inter-network coupling between default mode and

ronto-parietal, cingulo-opercular, and cingulo-parietal networks. 

In an attempt to understand the large-scale network architecture un-

erlying the aggregated EC pattern, we computed the node strength,

nd for visualization purposes, we showed the ten ROIs with the high-

st/lowest node strength in Fig. 5 (b)&(c). In terms of hubs with the

ositive node strength (i.e., highly coupled regions), the majority was

ound in the brain regions that form the DMN as well as some in the

nterior temporal lobe. The ROI with the highest positive node strength
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Fig. 6. Brain-behavior relationship using EC 

weights during AUT. The EC weights and be- 

havioral scores are z-scored. (a) The scatterplot 

of EC1 wt vs deliberate thinking score; (b) EC2 

wt vs spontaneous thinking scores. Dotted lines 

represent 95% confidence intervals. 
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as found to be the right medial prefrontal cortex (mPFC, MNI coor-

inate: 4.8 65.1 − 7.1) of the DMN. On the other hand, hubs with the

argest negative node strength (i.e., regions decoupled from other re-

ions) were found in the visual network and the DAN (left-lateralized).

he ROI with the highest negative node strength was found in the left

nferior frontal gyrus (IFG, MNI coordinate: − 45.2 2.7 32.4) within the

AN. 

.4. Examining whether individual differences in embedding can predict 

ehavior 

Individual differences were characterized in terms of EC-based

atent-space embedding. We hypothesized that the observed individual

ifferences in the latent-space embedding could be associated with in-

ividual differences in behavior. We limited this analysis to the two cre-

tivity tasks only. Specifically, the individual differences in the weights

f deliberate dimension (EC1) could be related to deliberate thinking

bility, while the variability in the weights of spontaneous dimension

EC2) could be related to spontaneous thinking ability. The behavioral

orrelates of deliberate and spontaneous thinking were computed as fol-

ows. We used the behavioral performance on the color-word interfer-

nce task (CWIT) as a proxy of participants’ deliberate thinking ability.

o operationalize the behavioral performance of spontaneous thinking,

e regressed the CWIT score from the Torrance Test of Creative Think-

ng task score (TTCT-F). Hence, by removing the variance associated

ith deliberate thinking from the creativity score, we attempted to use

he residuals as a proxy for spontaneous thinking. 

After controlling for age, handedness, and gender, we found that the

eights of EC1 during the AUT were significantly positively correlated

ith deliberate thinking score ( r = 0.45, p = 0.030), and EC2 during the

UT was significantly positively correlated with spontaneous thinking

core ( r = 0.43, p = 0.038), as shown in Fig. 6 . We did not observe any

ignificant brain-behavior relationship using EC weights for the second

reativity task (RAT). We also conducted a control analysis using EC3

nd EC4 and did not find any significant relationship ( ps > 0.1). 

. Discussion 

Human creativity is a vast construct, seemingly intractable to sci-

ntific inquiry, partially due to its multifaceted nature ( Jung, 2013 ).

t has been long suspected that creative cognition is supported by two

atent cognitive modes (i.e., deliberate and spontaneous modes of think-

ng). However, the neural evidence for the contribution of spontaneous

nd deliberate thinking in creativity has been somewhat inconsistent

 Mok, 2014 ). Here, we utilized an 8-task continuous multitask paradigm

CMP) and sampled across a wide range of cognitive space, including

reative and non-creative tasks, which requires various degrees of spon-

aneous and deliberate thinking. We aimed to use the well-known cog-

itive tasks to anchor the multifaceted creative cognition to facilitate

irect comparison between creative cognition and normative cognitive
7 
rocessing within the same study, which has never been carried out be-

ore according to the best of our knowledge. We employed a data-driven

pproach to extract the latent connectivity structure shared across tasks

s a first step toward validating the involvement of the latent cognitive

odes. 

Since creative cognition does not seem to be confined to any lo-

alized brain region ( Dietrich and Kanso, 2010 ), we decided to fo-

us on examining the large-scale network architecture using whole-

rain functional connectivity (FC). We first computed the task-FCs and

hen extracted latent connectivity patterns across all tasks using eigen-

onnectivity (EC) analysis ( Leonardi et al., 2013 ). The first two latent

imensions were observed to represent the deliberate and spontaneous

odes of thinking, respectively. When the task-FCs were embedded into

 2-dimensional latent space of deliberate/spontaneous thinking, we ob-

erved creativity tasks to be embedded in the region with both strong

eliberate and spontaneous thinking. The embeddings of other tasks

lso followed as expected. For example, the cognitively demanding tasks

uch as the theory of mind and n-back working memory appeared to tax

eliberate thinking heavily while requiring little spontaneous thinking.

n the contrary, resting state (mind wandering) and visuo-motor task

ere embedded higher on the spontaneous mode of thinking. Further,

he individual differences in EC weights were related to behavioral dif-

erences in the ability of deliberate and spontaneous cognition during

 creative task. Altogether, our findings demonstrate the potential of

sing a data-driven approach to pool information across multiple cogni-

ive processes in order to extract latent cognitive dimensions associated

ith creative cognition. 

Early research on creative cognition focused on isolating specific

rain regions associated with creative performance. Although domain-

pecific assessment of creative cognition proved somewhat successful

n teasing out regions specific to each domain, e.g., musical ( Limb and

raun, 2008 ), verbal ( Bechtereva et al., 2004 ), and figural ( Ellamil et al.,

012 ; Saggar et al., 2017 ; 2015 ), the domain-general assessment of cre-

tivity revealed a large variance in findings across studies ( Boccia et al.,

015 ). Recently, researchers have shifted gear towards studying the

hole-brain functional architecture related to creative cognition. These

etwork-based studies have highlighted a putative role of the default

ode network (DMN) and executive control network (ECN) during cre-

tive thinking ( Beaty et al., 2015 ; Zhu et al., 2017 ). In general, while

he DMN has been suggested to support spontaneous cognition, such as

ind-wandering, introspection, autobiographical memory, and mental-

zation ( Raichle, 2015 ), the ECN (operationalized as the frontal-parietal

etwork (FPN)), is commonly considered as a key player in deliberate,

oal-directed cognition. With regards to creative thinking, the current

onsensus is that an interplay between deliberate (ECN) and sponta-

eous thinking (DMN) is required for creative cognition. However, no

ata-driven validation exists regarding how this interplay facilitates cre-

tivity. 

To address this issue, here, we used a continuous multitask fMRI

aradigm consisted of a wide range of cognitive tasks including creativ-
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ty, and explored the latent dimensions using eigen-connectivity analy-

is. Interestingly, the first two latent dimensions were mapped onto two

utative cognitive axes, i.e., deliberate (FPN dominated intra-network

oupling) and spontaneous (DMN dominated intra-network coupling)

xes. We also examined the extent of inter-network coupling for each

atent dimension. For the deliberate axis, i.e., EC1, we observed greater

nter-network connectivity between DMN and task-positive networks

including FPN, dorsal attention network (DAN), and cingulo-opercular

etwork (CinO)). Our observation coincided with an earlier finding

f increased DMN connectivity with task-promoting regions across six

asks regardless of task-associated activation ( Amanda Elton and Wei

ao, 2015 ). For the spontaneous axis, i.e., EC2, we observed reduced

ntra-network coupling of the FPN as well as stronger within-network

onnectivity in the DMN. The weakened within-FPN coupling might al-

ow for flexible reconfiguration during spontaneous thinking, which has

een shown to positively correlate with creativity across the visual and

erbal domains ( Zhu et al., 2017 ). Moreover, an overall decoupling was

bserved for DAN, possibly reflecting down-regulated top-down atten-

ion modulation ( Zabelina and Andrews-Hanna, 2016 ). Lastly, as cre-

tivity requires both cognitive modes (EC1 and EC2), we aggregated

he first two EC patterns and revealed strengthened within-network cou-

ling in the DMN and FPN, as well as an overall increase in inter-network

onnectivity between the two. Overall, our findings extend network neu-

oscience research on creative cognition by identifying patterns of intra-

nd inter-network connectivity associated with latent cognitive modes

uring creative task performance. 

To pinpoint the key regions in the aggregated EC pattern underly-

ng creative cognition, we examined the regions with the highest ab-

olute node strength. The regions with the highest positive functional

oupling were found in the DMN, such as mPFC, angular gyrus (AG),

nd posterior cingulate cortex (PCC), as well as regions in the ante-

ior temporal lobe. The involvement of DMN in creative cognition has

een well-documented. For example, higher creativity has been associ-

ted with increased FC between the mPFC and the PCC ( Takeuchi et al.,

012 ). A lesion study found that lesions in the mPFC were associated

ith impaired originality ( Shamay-Tsoory et al., 2011 ). Moreover, us-

ng connectome-based predictive modeling ( Rosenberg et al., 2015 ), a

ecent study found regions in the DMN were among the top contribu-

ors to the so-called “high-creative network ”, the FC strength of which

ositively predicted creativity scores ( Beaty et al., 2018 ). Moreover, the

nterior temporal lobe (or temporal pole) has an important role in many

ognitive processes, including creative cognition, theory of mind, emo-

ion processing, and semantic processing ( Wong and Gallate, 2012 ). In

hort, our findings suggested that whole-brain integration of regions in

MN plays a pivotal role in creative cognition. 

As for the ROIs with the greatest decrease in the connectivity of the

ggregated EC, the majority were found in the DAN and visual network.

he decoupling of the visual network is consistent with past work linking

he deactivation of the visual cortex to the suppression of external stim-

li during creative thinking ( Benedek et al., 2016 ; Ritter et al., 2018 ).

long similar lines, as it is well-known that the DAN is responsible for

xternal attention ( Maillet et al., 2019 ), decoupling of the DAN may

lso signal loosened top-down attention to external stimuli, potentially

llowing for allocating more cognitive resources toward an introspec-

ive stream of consciousness ( Zabelina and Andrews-Hanna, 2016 ). In-

erestingly, we observed left-lateralized decoupling for the DAN. This

eft-over-right decoupling pattern in DAN mirrors lesion studies linking

eft hemisphere lesions to increases in creativity ( Seeley et al., 2008 ;

hamay-Tsoory et al., 2011 ; c.f. Chen et al., 2019 ). It has been sug-

ested that, under an inhibitory mechanism, the right hemisphere’s pre-

ominance in creative cognition may be inhibited by the left hemi-

phere in typical people, while such inhibition is weakened after dam-

ges to the left hemisphere, thus boosting creativity ( Huang et al.,

013 ). In our case, the decoupled left-lateralized DAN (especially L IFG

nd surrounding ROIs) could be linked to the release of inhibition of

he left hemisphere in a similar fashion that facilitates creativity, al-
8 
hough the lateralized involvement may depend on the creativity do-

ain ( Chen et al., 2019 ). Moreover, Lotze et al. (2014) also noted that

 reduced left- and inter-hemispheric connectivity of language areas,

amely the left posterior area BA44 (left IFG), may lead to a more spon-

aneous and less constraining cognition. It has been argued that the loos-

ned top-down regulatory control (hypofrontality), characterized as di-

inished prefrontal functioning, may paradoxically boost creative cog-

ition ( Chrysikou et al., 2013 ; Thompson-Schill et al., 2009 ). The above

ndings are consistent with our observation that the left IFG showed the

reatest decoupling in the aggregated EC pattern. Taken together, down-

egulation in regions responsible for top–down externally-directed at-

entional control in the left prefrontal cortex (e.g. left IFG) appears to

e a key neural feature for both creative cognition and other sponta-

eous cognitive processes ( Christoff et al., 2009 ; Julia W. Y. Kam et al.,

013 ). 

To sum up, our work sheds new light on the complex interaction

etween DMN and FPN during creative cognition. Our data-driven ap-

roach suggests these typically opposing networks may indeed cooper-

te during creative cognition as revealed by our EC analysis. Further-

ore, decoupling of key regions in DAN and visual networks may also

orrespond to the shielding of internally directed attention from the ex-

ernal environment during creative thinking ( Maillet et al., 2019 ), fur-

her facilitating creative cognition. 

.1. Limitations and future directions 

There are some methodological limitations associated with our

tudy. The first issue concerns the relatively small sample size ( N = 25)

s well as the short duration for each task. The sample size limited our

tatistical power in the brain-behavior analysis and short duration may

ffect our ability to fully capture the latent cognitive processes and un-

erstand the associated canonical brain networks. Future studies with

ore participants and longer task duration are needed to further val-

date our findings, as a recent study suggests that it may require a

onsortium-level sample size to obtain a reproducible brain-behavior

elationship ( Marek et al., 2020 ). 

Second, previous studies have shown the inter-subject differences in

C patterns are dominated by stable individual differences other than

ransient cognitive/task modulation ( Finn et al., 2015 ; Gratton et al.,

018 ; Xie et al., 2018a ). We circumvented this issue by removing indi-

idual baseline-FCs (i.e., FC fingerprints). However, this is a rather sim-

lified means of removing individual differences using ordinary least

quares regression, which may be inadequate for handling zero-inflated

C patterns. Moreover, EC analysis assumes linearity. Therefore, it can

nly capture linear relations among connectivity pairs. Future studies

an consider nonlinear decomposition methods such as general princi-

al component analysis ( Vidal et al., 2005 ) and geometry-aware prin-

ipal component analysis ( Harandi et al., 2018 ). These nonlinear meth-

ds could help us more efficiently explore the nonlinear relationships

etween task FCs. 

Third, given our goal of anchoring latent deliberate and spontaneous

hinking during creative cognition based on the dual-process theory of

reative cognition ( Christoff et al., 2016 ; Dietrich, 2004 ), we narrowed

ur focus to the first two EC components. We designed our study to

xamine the dual-process model by ensuring the tasks would induce

ental states varying mainly across these two latent putative cognitive

xes. Our choice was partially justified by linking EC weights with be-

avioral data ( Fig. 6 ), and matching EC patterns with previous neu-

oimaging findings in creative research. However, we cannot rule out

he possibility that there may exist alternative interpretations or theories

hat can better explain our findings, which requires future investigation.

or example, the Matched Filter Hypothesis (MFH) ( Chrysikou, 2019 ;

hrysikou et al., 2014 ), provides a complementary and alternative

ramework for creative cognition. Similar to the dual-process model, the

FH also proposes two cognitive axes, namely abstraction (top-down

s. bottom-up) and filtering (cognitive control; high vs. low control de-
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ands). It argues that different types of creative cognition may require

 different level of abstraction and filtering. Stimulus-driven idea gen-

ration, for example, may benefit from a lower level of filtering (down-

egulated cognitive control) and lower abstraction (bottom-up), while

ule-based idea evaluation may benefit from a higher level of filtering

upregulated cognitive control) and higher abstraction (top-down). Fu-

ure work could test the MFH by employing a CMP with a different set of

asks and a similar analytical approach (i.e., eigen-connectivity). Addi-

ionally, given the relatively modest variance explained by the first two

Cs (4.4% and 3.3%, respectively), there is no doubt that higher-order

Cs may be cognitively meaningful, as many of them also explained

ignificantly more variance than the chance level and provided some

ask separability (Supplemental Fig. S4). Indeed, some interesting work

as been conducted using EC analysis on the multitask data from Hu-

an Connectome Project, which looked at higher-order EC components

o better identify individuals and tasks ( Abbas et al., 2020 ; Amico and

oñi, 2018 ). However, as is often the case with any latent factor anal-

sis, increasing the number of latent components/factors comes at the

ost of interpretability. Although the analysis was data-driven, it was

lso hypothesis-constrained (i.e., we opted to only analyze the compo-

ents of a-priori/theoretical interest). Thus, we believe that for our spe-

ific question, limiting our focus to the first two ECs was a reasonable

rade-off. 

Another potential limitation of the current study relates to the re-

ponse collection method for the AUT and RAT. Participants were asked

o recall their ideas post-scan, which added a memory component that

ould have been reflected in neural activity. Although the correlations

etween in-scanner and post-scan responses were high for both tasks ( p

 0.001; see Supplemental Fig. S5) —providing a partial validation of the

ost-scan method —the added memory component is important to con-

ider. When designing future neuroimaging experiments requiring ver-

al responses, creativity researchers should weigh the pros and cons of

ifferent response collection methods, but it is generally recommended

o separate thinking from (verbal) responding (cf. Benedek et al., 2019 ).

Lastly, the rich spatiotemporal dynamics of the brain remain un-

apped in this study. Future work can also investigate the time-varying

C during task performance ( Gonzalez-Castillo and Bandettini, 2018 ;

ergara et al., 2019 ; Xie et al., 2018b ) as well as instantaneous acti-

ation patterns using Topological Data Analysis (TDA; Geniesse et al.,

019 ; Saggar et al., 2018 ) and Gaussian process latent variable models

GPLVM; Bahg et al., 2020 ). Moreover, as non-neuronal artifacts (e.g.,

ead motion) could still have confounded our results, we have made our

est attempts to mitigate these artifacts by adopting a state-of-art fMRI

reprocessing pipeline ( Esteban et al., 2019 ). Additionally, our anal-

sis also assumed that the functional parcellation remained unchanged

espite the changing cognitive demands, which is subject to future eval-

ation ( Salehi et al., 2019 ). 

. Conclusions 

Creativity theories have long emphasized dual-process models of

pontaneous and deliberate thought, but bottom-up data-driven evi-

ence supporting these theories has been largely absent. Using a data-

riven eigen-connectivity (EC) analysis with a continuous multitask

aradigm (CMP), we extracted latent connectivity patterns shared across

ultitask FCs - corresponding to deliberate and spontaneous thinking

 and showed that creative cognition may require a balance of these

wo latent cognitive modes. The EC pattern underlying creative cog-

ition revealed a complex interaction between the two canonical and

ypically-opposite brain networks. We observed creative cognition re-

uires stronger intra-network connectivity in the default mode network

DMN) and fronto-parietal network (FPN), as well as stronger inter-

etwork coupling between the two. We also found higher decoupling in

he left-lateralized dorsal attention network (DAN) and visual network,

hich may facilitate creative thinking by shielding the brain from ex-

ernal stimuli. In sum, our work provided exciting initial evidence of the
9 
atent cognitive modes of creative cognition, potentially offering novel

eural evidence for the classic theory of creativity. 
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