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Abstract 8 

Resting-state functional connectivity (RSFC) is altered across various psychiatric disorders. 9 
Brain network modeling (BNM) has the potential to reveal the neurobiological underpinnings of 10 
such abnormalities by dynamically modeling the structure-function relationship and examining 11 
biologically relevant parameters after fitting the models with real data. Although innovative BNM 12 
approaches have been developed, two main issues need to be further addressed. First, 13 
previous BNM approaches are primarily limited to simulating noise-driven dynamics near a 14 
chosen attractor (or a stable brain state). An alternative approach is to examine multi(or cross)-15 
attractor dynamics, which can be used to better capture non-stationarity and switching between 16 
states in the resting brain. Second, previous BNM work is limited to characterizing one disorder 17 
at a time. Given the large degree of co-morbidity across psychiatric disorders, comparing BNMs 18 
across disorders might provide a novel avenue to generate insights regarding the dynamical 19 
features that are common across (vs. specific to) disorders. Here, we address these issues by 20 
(1) examining the layout of the attractor repertoire over the entire multi-attractor landscape using 21 
a recently developed cross-attractor BNM approach; and (2) characterizing and comparing 22 
multiple disorders (schizophrenia, bipolar, and ADHD) with healthy controls using an openly 23 
available and moderately large multimodal dataset from the UCLA Consortium for 24 
Neuropsychiatric Phenomics. Both global and local differences were observed across disorders. 25 
Specifically, the global coupling between regions was significantly decreased in schizophrenia 26 
patients relative to healthy controls. At the same time, the ratio between local excitation and 27 
inhibition was significantly higher in the schizophrenia group than the ADHD group. In line with 28 
these results, the schizophrenia group had the lowest switching costs (energy gaps) across 29 
groups for several networks including the default mode network. Paired comparison also 30 
showed that schizophrenia patients had significantly lower energy gaps than healthy controls for 31 
the somatomotor and visual networks. Overall, this study provides preliminary evidence 32 
supporting transdiagnostic multi-attractor BNM approaches to better understand psychiatric 33 
disorders' pathophysiology.  34 

 35 

  36 
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Introduction 49 

Resting-state functional connectivity (RSFC) is observed to be altered across various 50 
psychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit 51 
hyperactivity disorder (ADHD) (Baker et al., 2019; Friston et al., 2016; Khadka et al., 2013; 52 
Konrad and Eickhoff, 2010; McCarthy et al., 2013; Perry et al., 2019; Xia et al., 2018). Likewise, 53 
structural connectivity (SC) based on diffusion-weighted imaging (DWI) has also revealed 54 
significant deviations across patient populations (Favre et al., 2019; Friston et al., 2016; Kelly et 55 
al., 2018; Konrad and Eickhoff, 2010; van Ewijk et al., 2012). Here, we argue for using a brain 56 
network modeling (BNM) approach that captures structure-function relationships to better 57 
characterize disorder-specific findings across modalities. BNM models are nonlinearly 58 
dependent on structure, which allows them to capture additional variances in function through 59 
the synergistic effect of the structural connectome and biophysical parameters (Breakspear, 60 
2017; Deco et al., 2011). 61 

A vital benefit of the BNM approach is that it allows for examining differences in modeled 62 
physiological parameters (e.g., inhibitory synaptic strength) and generates concrete hypotheses 63 
regarding the neurobiological differences associated with psychiatric disorders. Along this line of 64 
thinking, previous studies have shown that RSFC can be partially predicted using SC directly or 65 
via modeling approaches (Hagmann et al., 2008; Honey et al., 2009; Kringelbach and Deco, 66 
2020; Schirner et al., 2018). In terms of modeling psychiatric disorders, one BNM study with 67 
schizophrenia patients demonstrated how an increase in the regional excitation/inhibition (E/I) 68 
ratio led to an increase in functional connectivity, especially in the frontal-parietal network (Yang 69 
et al., 2016). Another study on autism patients showed that increased recurrent E/I explained 70 
abnormalities in both somatosensory regions and association cortices (Park et al., 2021). 71 
Finally, a study on ADHD patients found abnormalities in a model parameter linked to elevated 72 
regional oscillations and identified two subgroups of patients differing in personality traits 73 
(Iravani et al., 2021). 74 

While previous modeling studies have advanced our understanding of psychiatric disorders, 75 
several key issues can be better addressed. First, previous applications of BNM in clinical 76 
populations were primarily limited to simulating noise-driven (or stochastic) dynamics near a 77 
chosen attractor (or a stable brain state (Gustavo Deco et al., 2013; Demirtaş et al., 2019); see 78 
(Cabral et al., 2017) for more details). As an alternative approach, multi(or cross)-attractor 79 
examinations can be used to better capture non-stationarity and switching between states in the 80 
resting brain (Deco and Jirsa, 2012; Freyer et al., 2012; Hansen et al., 2015; Zhang et al., 2023, 81 
2022). Second, previous BNM work was primarily limited to characterizing one disorder at a 82 
time. Given the large degree of co-morbidity across psychiatric disorders and the recent push in 83 
the field toward examining biological features across disorders, comparing BNMs across 84 
multiple disorders might provide a novel avenue to generate insights regarding the common 85 
dynamical features across disorders vs. specific to each disorder. 86 

Here, we address both of these issues by (1) examining the layout of the attractor repertoire 87 
over the entire multi-attractor landscape using our recently developed cross-attractor BNM 88 
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approach (Zhang et al., 2022); and (2) characterizing and comparing multiple disorders 89 
(schizophrenia, bipolar, and ADHD) with healthy controls using an openly available and 90 
moderately large multimodal dataset (LA5c) from the UCLA Consortium for Neuropsychiatric 91 
Phenomics (Poldrack et al., 2016).  92 

Using data from undiagnosed adults from the Human Connectome Project (HCP), we have 93 
recently shown that real data derived RSFC can be accurately explained by the set of possible 94 
transitions between all attractors, termed cross-attractor coordination matrix (Zhang et al., 95 
2022). In contrast to single-attractor based approaches for modeling the RSFC (G. Deco et al., 96 
2013; Demirtaş et al., 2019; Ghosh et al., 2008), our modeling approach quantifies how well 97 
brain regions co-fluctuate across all possible attractor states. This deterministic approach 98 
provides a summarizing metric of the attractors landscape and has been shown to be especially 99 
effective at explaining functional connections across hemispheres seen in the real data (Zhang 100 
et al., 2022).  101 

Moreover, we also defined the concept of the “energy gap” between attractor states for 102 
characterizing the potential costs of state switching. Here, to capture individual differences in 103 
neurobiology across disorders, we varied model parameters for local excitation and inhibition 104 
and the global coupling between brain regions. The optimal individual combination of the 105 
parameters was determined based on how well the cross-attractor coordination matrix fits with 106 
the experimentally measured RSFC. Based on the optimal model configuration, we calculated 107 
the associated global energy gap measures for each subject following our previous study 108 
(Zhang et al., 2022). Since the abnormalities may localize to specific brain regions or functions 109 
(Baker et al., 2019; Ishida et al., 2023; Kebets et al., 2019), we also examined energy gap 110 
metrics averaged across regions of canonical resting-state networks (Yeo et al., 2011). The 111 
distribution of each model parameter and the global and network-specific energy gap measures 112 
were compared across the groups to identify disorder-specific abnormalities.  113 

We expect the model fitness to be similar across participant groups. Based on previous findings 114 
of inhibitory neuron deficits, we hypothesize that parameters for local inhibition would be 115 
affected for schizophrenia and bipolar patients (Benes and Berretta, 2001; Lewis et al., 2012). 116 
We also expect higher values for energy gap measures in schizophrenia patients since they are 117 
associated with cognitive deficits and more severe psychopathology, which may result in more 118 
difficult transitions between attractor states. Regarding network-specific energy gap effects, we 119 
hypothesize the default mode network to show significant abnormalities given the large amount 120 
of evidence for its role in various psychiatric disorders (Baker et al., 2019; Bluhm et al., 2007; 121 
Whitfield-Gabrieli and Ford, 2012). Since ADHD has been associated with deficits in attention 122 
networks (McCarthy et al., 2013), we expect more significant abnormalities for energy gap 123 
metrics in the dorsal and ventral attention networks. 124 

Overall, we aim to better characterize the commonality and differences between psychiatric 125 
disorders using a multi(cross)-attractor BNM model and a transdiagnostic dataset.  126 

 127 
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Methods 128 

Participants 129 

The LA5c dataset was available through the OpenNeuro website, with further details presented 130 
elsewhere (Poldrack et al., 2016). In brief, adults ages 21 to 50 years were recruited from the 131 
Los Angeles area as part of the Consortium for Neuropsychiatric Phenomics. All participants 132 
gave informed consent and were either healthy (HLTY) or had a clinical diagnosis of 133 
schizophrenia (SCHZ), bipolar disorder (BPLR), or attention deficit hyperactivity disorder 134 
(ADHD). The downloaded dataset included 130 HLTY, 50 SCHZ, 49 BPLR, and 43 ADHD. 135 

Neuroimaging data description and analysis 136 

The MRI data were collected using two 3T Siemens Trio scanners and included a 1 mm T1 137 
scan with MPRAGE sequence, a 2 mm 64-direction DWI scan with one shell (b = 1000 s/mm2), 138 
and a 4 mm echo planar imaging (EPI) resting state fMRI (rsfMRI) scan with 2 s TRs and lasting 139 
304 seconds.  140 
 141 
rsfMRI was preprocessed using the automated workflow from fMRIprep, which is elaborated 142 
elsewhere (Esteban et al., 2019). The output fMRI in standard ‘MNI152NLin6Asym’ space was 143 
further processed by removing (censuring) volumes with a framewise displacement of 0.5 mm 144 
or higher, and regressing out six motion parameters (three translational and three rotational) 145 
from the remaining good frames. Any subject with less than 80% good frames was excluded 146 
from further analysis. To generate the RSFC, we used the Desikan-Killiany (DK) atlas (Gustavo 147 
Deco et al., 2013; Zhang et al., 2022) with 66 parcels (excluding left and right insula). The 148 
parcellation matches our previous study on HCP subjects and has been shown to be a good 149 
compromise between biological realism and computation runtime (Gustavo Deco et al., 2013; 150 
Zhang et al., 2022). For easier comparison of connectivity between corresponding regions of the 151 
two hemispheres, the sorting order of the parcels in the two hemispheres was flipped (sorting 152 
order shown in Supplemental Fig. 10b). This sorting order often results in a top right to bottom 153 
left diagonal in the connectivity matrix due to strong connectivity between matching regions of 154 
the two hemispheres (Gustavo Deco et al., 2013; Zhang et al., 2022). Whole brain rsfMRI time 155 
series were first averaged for voxels part of each parcel defined based on the subject DK atlas 156 
in standard ‘MNI152NLin6Asym’ space created via Freesurfer as part of the fMRIprep workflow. 157 
The parcel level time series were then correlated between each pair of parcels to generate the 158 
RSFC matrix. 159 
 160 
For the analysis of diffusion scans, MRtrix3 was used for preprocessing, computing fixel-based 161 
values, and generating the probabilistic streamlines (Tournier et al., 2019). Preprocessing 162 
included removing random noise and ringing artifacts, removing distortion caused by eddy 163 
currents using the eddy functionality from FSL (Andersson et al., 2003), and applying bias field 164 
correction using the N4 algorithm of ANTs (Gustavo Deco et al., 2013; Wong and Wang, 2006). 165 
Subsequently, tissue response functions representing single-fiber white matter, gray matter, and 166 
cerebral spinal fluid (CSF) were computed and used for estimating the fiber orientation 167 



 6 

distribution (FOD) based on the multi-tissue constrained spherical deconvolution approach 168 
(Tournier et al., 2007). To generate an anatomically constrained tractography (ACT) (Gustavo 169 
Deco et al., 2013), the structural T1 was co-registered to the DWI scan and was used to 170 
generate tissue segmentation of cortical gray matter, subcortical gray matter, white matter, CSF, 171 
and pathological tissue. Using the resulting tissue segmentations, 10 million probabilistic 172 
streamlines were generated with the MRtrix3 default iFOD2 algorithm by seeding at the gray 173 
and white matter interface. To remove biases in the whole-brain tract generation process, the 174 
number of streamlines was down-sampled to 1 million based on the SIFT algorithm (Smith et 175 
al., 2013). The co-registered subject-specific DK atlas was used to generate the SC by counting 176 
the number of streamlines between each parcel pair and normalizing by the average of the two 177 
parcel volumes. The resulting raw SC was further processed by setting the diagonal elements to 178 
zero and then normalizing by the value of the total connectivity from the parcel with the highest 179 
total connectivity (i.e., infinity normalized, Equation 4). For quality control based on outlier 180 
detection, the similarity between the SC of all subjects was quantified with Spearman’s 181 
correlation between the lower diagonal entries of the symmetrical matrix. Any subject with a 182 
similarity score of less than three standard deviations from the group mean was excluded from 183 
further analyses. 184 
 185 
After excluding subjects with poor fMRI and outlier DWI connectivity, there were 104 HLTY, 29 186 
SCHZ, 41 BPLR, and 31 ADHD participants. The demographics of the participants and their 187 
average framewise displacement (FD), are shown in Table 1. Significant group differences were 188 
observed for age, site (scanner), and average FD. Post-hoc, no significant paired comparison 189 
difference was observed for the overall age effect (ANOVA F = 3.04, p = 0.03). For the overall 190 
site effect (Pearson’s !2 = 22.7, p < 0.001), the HLTY group had a larger percentage of 191 
participants from site 1 and a lower percentage from site 2 than expected (|standardized 192 
residuals| = 4.7). For the effect of average FD (ANOVA F = 5.21, p = 0.002), the HLTY group 193 
had a significantly lower value than both the SCHZ group (p = 0.008) and the BPLR group (p = 194 
0.028). 195 
 196 
Table 1: Participant demographics.  197 

Group N Age* Sex 
(Male/Female) 

Site* (1/2) Average Framewise 
Displacement (FD) * 

Healthy (HLTY) 104 30.8±8.4 53/51 83/21 0.12±0.05 

Schizophrenia 
(SCHZ) 

29 34.7±9.5 22/7 15/14 0.16±0.05 

Bipolar Disorder 
(BPLR) 

41 35.0±8.4 22/19 21/20 0.15±0.07 

Attention Deficit 
Hyperactivity Disorder 
(ADHD) 

31 32.3±8.4 18/13 13/18 0.13±0.06 

* Significant group difference based on omnibus test 198 
 199 
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Overview of the brain network model 200 

The implementation details of our BNM model tailored for generating cross-attractor-based 201 
RSFC (Figure 1) have been presented elsewhere (Zhang et al., 2022). Briefly, the model has 202 
parameters that can be linked with biological quantities (i.e., an ensemble of leaky integrate-203 
and-fire neurons receiving uncorrelated noisy inputs) as in the Wong-Wang model (Wong and 204 
Wang, 2006) and is modified such that the transfer function from input current to firing rate is 205 
similar to the Wilson-Cowen model (Wilson and Cowan, 1972), which captures a more diverse 206 
range of local dynamics.  207 

Equations 1 and 2 describe how the synaptic activity or fraction of open synaptic channels of 208 
excitatory ("!

(#)) and inhibitory ("%
(#)) populations evolve in brain region #. For each region #, $&'

(#) 209 
represent the local coupling from population % to &, '( is the sigmoidal transfer function for 210 
population (, ))

(#) represent the global external input to the region # and *(
(#)
(,) is the intrinsic 211 

noise for population (. The decay time constants (.), kinetic parameters (/), are fixed for each 212 
population across regions, while the noise scaling constant (0) is constant across both 213 
populations (see Table 2). 214 
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Equation 3 describes how the global input current ())
(#)) to the excitatory population of each 217 

region # is affected by the activity of all other regions 7, which is scaled by the structural 218 
connectivity (8#.) and global coupling variable 9. To generate 8#., diagonal elements of the raw 219 
SC matrix were first set to 0.  Then, the matrix elements were normalized by the maximum of 220 
the column sums (Equation 4). 221 

))
(#)
("!5555⃗ ) = 9 ∑ 8#."!

(.)/
.0# 	                                                                                   (3) 222 

‖=‖1 = >%?#(∑ @8#.@
/
.23 ) ≡ 1                                                                                    (4) 223 

Equation 5 describes the sigmoidal transfer function that converts input current ? for a neuronal 224 
population (() into output firing rate '4(?), with constants %, &, B, and C5&6 that defines the 225 
shape of the sigmoidal curve. 226 

'((?) 	= 	
7&'(	9	

')(	–	,)-.&'(
/-01)(')(	–	,)-	.&'()

3:;-1)(')(-,))                                                                             (5) 227 

 228 
Table 2: Fixed model parameter values. For details on the choice of values, please refer to 229 
(Zhang et al., 2022) and previous literature (Gustavo Deco et al., 2013; Wong and Wang, 2006). 230 
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Parameter Value Interpretation 
.! 0.1 (s) Decay time of NMDA receptor  
.% 0.01 (s) Decay time of GABA receptor  
/! 0.641 Kinetic parameter of excitatory population  
/% 1 Kinetic parameter of inhibitory population  
0 0.01 Amplitude of intrinsic noise 
%! 310 (nC-1) Slope of the near-linear segment of sigmoidal 

curve (excitatory population) 
&! 125 Hz Middle of near-linear segment of sigmoidal 

curve (excitatory population) 
B! 0.16 (s) Smoothness of the corner bends of sigmoidal 

curve (excitatory population) 
%% 615 (nC-1) Slope of the near-linear segment of sigmoidal 

curve (inhibitory population) 
&% 177 (Hz) Middle of near-linear segment of sigmoidal 

curve (inhibitory population) 
B% 0.087 (s) Smoothness of the corner bends of sigmoidal 

curve (inhibitory population) 
C5&6 500 (Hz) Maximal firing rate 
$%% 0.05 (nA) Inhibitory-to-inhibitory coupling 
)% 0.1 (nA) Global input current to inhibitory population 

 231 

Computing attractor states 232 

Due to the limited quality of the diffusion scans and previous studies showing the effectiveness 233 
of using a group average SC for the BNM modeling (Iravani et al., 2021; Zhang et al., 2022), we 234 
decided to use the group average SC for this study. Using a group-specific SC instead of one 235 
for all groups allowed for preserving group variations in SC in the subsequent analysis. The DK 236 
parcellation was chosen for comparison with previous works (Gustavo Deco et al., 2013; 237 
Kringelbach and Deco, 2020; Zhang et al., 2022) and its optimal trade-off in terms of regional 238 
homogeneity and computational efficiency. To encompass the possible optimal fits across 239 
groups and individuals within each group, a sizeable regular grid of 88 local configurations of 240 
(w<<, w<=), spanning from 0.5 to 4 for w<< with a step size of 0.5 (8 combinations) and spanning 241 
from 0.5 to 3 with a step size of 0.25 for w<= (11 combinations), were each used for computing 242 
cross-attractor coordination. Further, the global coupling parameter 9 was varied from 0 to 5 243 
with 0.1 increments. Similar to the bounds set for w<< and w<=, the 9 range was set to capture 244 
an extensive range of values for fitting individual differences in RSFC. In contrast, the increment 245 
size was set to minimize the number of run configurations but still be able to track the rate of 246 
change in the dynamic landscape. For each specific configuration of global coupling (9), 247 
connectivity matrix (8), local excitation ("!!), and local inhibition ("!"), the set of fixed points was 248 
determined by recursively searching for steady-state solutions or zeroes of equations 1 and 2 249 
from an initial set of guesses and then making new guesses based on the solutions found. The 250 
recursive process was repeated until a preset number of zeroes were found, or a specific 251 
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recursion depth limit was reached. Further details of the algorithm are presented in our previous 252 
work (Zhang et al., 2022). To determine the set of stable fixed points or attractors from all the 253 
fixed points, we first classified the fixed points based on the Jacobian of the solution. We then 254 
performed an additional perturbation test around each fixed point for verification. For this 255 
verification step, the integration step was set at 0.001 second. Numeric integration is not used 256 
for any other part of our analysis. Numeric integration is not used for any other part of our 257 
analysis. Figures 1b and 1c show example bifurcation diagrams corresponding to the different 258 
local configurations, with all the attractors labeled by type: stable nodes, stable spirals, and limit 259 
cycles. The remaining fixed points, labeled as others, are unstable and not attractors. Since the 260 
group average SC was used in this study, 88 bifurcation diagrams (one for each local 261 
configuration), portraying all possible attractor states, were generated for each group. 262 

 263 

Figure 1. Overview of cross-attractor-based model: Panel a) shows how our model is used to calculate the cross-264 
attractor coordination matrix from the set of all attractors, which is then fitted with the real data derived RSFC. Panel 265 
b) shows a set of bifurcation plots generated from 88 different local configurations. Panel c) shows a zoomed-in 266 
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version of one bifurcation plot to illustrate what the maximum and mean energy gap metrics (E-max, E-mean) 267 
represent.  268 
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Computing cross-attractor coordination 271 

Figure 2.  Cross-attractor coordination matrix and its potential relation to functional connectivity. Cross-
attractor coordination matrix for a specific configuration of global coupling (!), connectivity matrix ("), local excitation 
(#22), and local inhibition (#23) is computed from the list of $	attractors and & regions (i.e., $ by & matrix 
'(!, ",#22 , #23)) by first discretizing the attractor values through binning of the distribution of +2 across all attractors 
and brain regions, resulting in a discretized $ by & matrix ',(!, ",#22 , #23), and then computing the Spearman’s 
correlation between the columns of ',, which are the attractor state values for each brain region, to produce a & by & 
cross-attractor coordination matrix -(!, ",#22 , #23). Further explanations of each step are provided in the text. The 
general matrix form of the three matrices ', ',, and - are shown in subpanels a), d), and f) respectively.	+2,5(6) refers to 

the +2  value for region . and attractor /; +,2,5(6) refers to the discretized +,2 value for region . and attractor /;  0(',76 , 	',75) 
refers to the Spearman correlation between columns . and / of ',. A real data example of the three matrices are 
shown in subpanels b), e), and g) respectively. Subpanel c) illustrates the discretization process for an exemplar 
data. Subpanel h) shows a simplified toy example (4 attractors, 3 regions, and 2 discretized states) illustrating how ', 
is used to calculate -. With the toy example, subpanels j) and k) illustrate how the cross-attractor matrix is 
conceptually related to the traditional definition of functional connectivity (i.e., the correlation between the neural time 
series of brain regions). Specifically, assuming the brain cycles through the attractor states with an equal probability 
of traversing each attractor, then as time increases, the functional connectivity k) becomes the cross-attractor 
coordination. For simplicity of illustration, the example time series was deliberately chosen with an equal occurrence 
of each attractor (i.e., 2 times), which would be true of any sequence satisfying the assumptions as the time 
approaches infinity. 
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Computation of the cross-attractor coordination is identical to that of our previous work (Zhang 272 
et al., 2022), described in Figure 2 and summarized as follows. For each specific configuration, 273 
an attractors-by-regions matrix, or an attractor repertoire E(9, 8, $!! , $!%), was assembled by 274 
combining the values of each attractor 7, ["!,.

(3)
		"!,.

(?)
…	"!,.

(@)
]A as a column vector, where the 275 

element "!,.
(B)  is the value of region # for attractor 7 (Figure 2a). The regional "!,.

(B)  values across all 276 
matrix elements of E were then used to generate a distribution, from which bins were defined 277 
with the local minima and two edges as boundaries (see Figure 2c). A discretized attractor 278 
repertoire EJ was created by assigning the original matrix values with the bin number they were 279 
part of. The discretized attractor values for each region (Figure 2d) were subsequently 280 
correlated with each other, resulting in a symmetrical regions-by-regions matrix K, termed the 281 
cross-attractor coordination matrix (Figure 2f). An intuitive understanding of the cross-attractor 282 
coordination matrix is that it quantifies the level of coordinated activity between regions across 283 
all the attractors. A higher matrix value between two regions means they are more coordinated 284 
in their activity changes when switching between attractor states.  285 

The cross-attractor coordination matrix can be correlated with the real RSFC because 286 
functionally connected regions are expected to have co-fluctuating attractor states (i.e., similar 287 
values for the same attractor). Moreover, the cross-attractor coordination matrix may be related 288 
to the classical definition of functional connectivity (i.e., the correlation between the neural time 289 
series of brain regions) if the attractor states can be seen as states that the brain traverses 290 
through during the resting state. In fact, if the probability of traversing each attractor is the same, 291 
then as time increases, the functional connectivity would approach the cross-attractor 292 
coordination matrix (see Figure 2 j,k). It is important to note that these attractor states are not 293 
the same as dynamical functional network states, as shown in previous literature (Zhang et al., 294 
2023). 295 

Individual RSFC fitting with cross-attractor coordination 296 

The optimal configuration in terms of <9, $!!, and $!%> for each participant, was determined by 297 
comparing the Spearman’s correlation between the real RSFC and the cross-attractor 298 
coordination matrix associated with each configuration (Zhang et al., 2022) (Figure 1a). This 299 
approach to evaluating fitness is commonly used in the literature (G. Deco et al., 2013; Demirtaş 300 
et al., 2019; Park et al., 2021; Wang et al., 2019). Since 88 different local configurations (8 $!! 301 
x 11 $!%) were modeled with a 9 spanning between 1 and 5 and a step size of 0.1 (51 302 
possibilities), the best fitting cross-attractor coordination matrix (i.e., highest Spearman’s 303 
correlation) was found by comparing 4488 model combinations. To prevent the fitting of RSFC 304 
to a cross-attractor coordination matrix associated with unrealistic attractor repertories with large 305 
gaps between separate sub-repertoires, the maximum energy gap allowed for fitting was set to 306 
be no greater than 0.2 based on evidence from our previous work (Zhang et al., 2022). 307 
Specifically, the max energy gap for healthy subjects fitted to the model without an energy 308 
constraint was mainly less than 0.2, and the loss in model fitness with the constraint only 309 
becomes evident above that threshold. 310 
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Energy gap calculations 311 

Energy gap measures were calculated at the optimal (9, $!!, and $!%) for each subject. Based 312 
on our previous study (Zhang et al., 2022), the energy gap was defined by calculating the 313 
average S< across all regions for each attractor and then taking the difference between adjacent 314 
attractors after sorting by the global average S< values. While other ways of describing the multi-315 
attractor landscape are possible, this simple summary metric is an intuitive way of relating the 316 
attractors based on the difference in the fraction of open post-synaptic ion channels (i.e., S<). A 317 
larger energy gap means that more energy is required to open the additional ion channels in the 318 
higher attractor state relative to the lower attractor state. The maximum and mean energy gap 319 
(E-max, E-mean) were then calculated from the distribution of energy gaps for each subject 320 
(Figure 1c). Since these measures were based on the global average S<, we referred to them as 321 
global energy gap measures. 322 

Additionally, we also examined network-specific energy gaps. Network-specific energy gaps 323 
between adjacent attractors were defined as the difference between the S< averaged across 324 
brain regions that are part of specific canonical networks (Yeo et al., 2011). Each parcellated 325 
region of the DK atlas was assigned to a particular network based on which network had the 326 
most vertices in the region and included more than 25% of the vertices (Supplemental Fig. 10). 327 
The attractors were sorted based on the global S< since attractor states themselves were 328 
defined based on the global average. 329 

Group comparison of individual values 330 

The optimal 9, the fitness correlation (Spearman's ρ), $!!, $!%, $!!/$!% ratio, E-max, and E-331 
mean were compared across the clinical groups with the Kruskal-Wallis test after regressing out 332 
covariates for age, sex, site (scanner), and average FD. Post-hoc rank-sum tests with Tukey 333 
correction were used to determine significant paired differences if there was an overall group 334 
effect. Non-parametric rank-based tests were used since the distributions of the variables were 335 
not normal, and the tests are more robust to uneven distributions of individual values. 336 

Results 337 

Description of attractor landscapes 338 

The bifurcation diagram of S< with changing values of 9 agrees with previous studies (Gustavo 339 
Deco et al., 2013; Zhang et al., 2022). Key characteristics include an initial jump from a single 340 
stable state to multiple stable states or multistability, and a second bifurcation that splits the set 341 
of attractors to a lower and higher arm (Figure 1). The arms then gradually collapse toward two 342 
extreme states with further increases in 9.  343 
 344 
Bifurcation diagrams for the healthy group are shown in Supplemental Fig. 15 to 22. To better 345 
illustrate how the landscape changes in attractor type and numbers, Supplemental Fig. 23 to 30 346 
show the total number of attractors and the number of attractors of each type for the healthy 347 
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group. As $!! increases, the gap between the first and second major bifurcation value of 9 is 348 
widened. The attractors also span a wider range of S< values for higher 9 values. As $!% 349 
increases, the entire bifurcation diagram shifts toward a higher 9, including the 9	value at the 350 
first and second major bifurcation. The total number of possible attractors across all 9 increases 351 
while the number of limit cycle solutions decreases and occurs at higher 9 values. The same 352 
general trends hold for the bifurcation plots of all patient groups. 353 

Individual model fitting is similar across groups 354 

Figure 3a shows the distribution of correlation (Spearman's ρ) between the cross-attractor 355 
coordination matrix and real RSFC for each participant group. The individual fitting of model 356 
parameters resulted in very similar correlation values for each of the 4 groups, which were 0.44 357 
(0.09) for HLTY, 0.48 (0.08) for SCHZ, 0.47 (0.12) for BPLR, and 0.42 (0.09) for ADHD. Overall, 358 
model fitting was at par with previous studies, which had fitness correlation values between 0.4 359 
and 0.5 (Gustavo Deco et al., 2013; Iravani et al., 2021; Park et al., 2021; Wang et al., 2019). 360 
After regressing out the effect of age, sex, site (scanner), and average FD, there was no 361 
significant group effect for the fitness correlation based on a 1-way Kruskal-Wallis test (M2 = 362 
3.29, p = 0.4), suggesting that individual fitness was similar across both healthy controls and 363 
patients. 364 

Example fitting results for selected participants are shown in Supplemental Fig. 1 to 4. Stability 365 
of fitness values (Spearman’s rho) was observed around the maximum, suggesting reliable 366 
fitting. The distribution of all model parameters for each group is shown in Supplemental Fig. 5 367 
to 8. The correlation with RSFC was higher for cross-attractor coordination than for group SC for 368 
nearly all individuals (see Supplemental Fig. 9). As expected, the cross-attractor coordination 369 
matrix of individuals is correlated to the group SC, which was used as part of the BNM model. 370 

Global coupling is decreased in schizophrenia 371 

The distribution of optimal 9 associated with the correlation values is shown in Figure 3b. The 372 
average 9 value was 3.0 (0.8) for HLTY, 2.4 (0.9) for SCHZ, 2.6 (0.8) for BPLR, and 2.9 (0.8) 373 
for ADHD.  These values are close to where the fitted bifurcation diagram starts to split into a 374 
high and low sub-repertoire of attractors, or what Deco and colleagues refer to as the edge of 375 
the second bifurcation or criticality (Deco et al., 2013). It is also where the total number of 376 
attractors is typically the largest (see Supplemental Fig. 23 to 30). After regressing out the effect 377 
of age, sex, site (scanner), and average framewise displacement, there was a significant group 378 
effect for the optimal 9 based on a 1-way Kruskal-Wallis test (M2 = 12.06, p = 0.007).  Post-hoc 379 
paired comparisons show that 9 was significantly higher for HLTY than SCHZ after correction 380 
for multiple comparisons. 381 
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 382 

Figure 3. Model parameter fitting: Boxplots showing the distribution across group participants for a) model fitness 383 
(Spearman’s ρ), b) global coupling (!) value, and c) excitation to inhibition ratio (#22/#23). The subpanel titles show 384 
the Kruskal-Wallis test results for group comparisons after controlling for age, sex, site, and average FD. For 385 
comparisons with a significant overall group effect, post hoc ranksum tests were done between each group pair. 386 
Significant paired differences after Tukey correction (* p-val < 0.05) are marked by a line and star. 387 

 388 

Optimal local configuration differs across groups 389 

There is wide individual variability in terms of local configuration (w<<, w<=) within each group. 390 
For the HLTY group, the average w<< is 1.83 (1.04), the average w<= is 2.10 (0.63), and the 391 
average w<</w<= ratio is 1.02 (0.72). For the SCHZ group, the average w<< is 1.88 (1.06), the 392 
average w<= is 1.76 (0.85), and the average w<</w<= ratio is 1.30 (0.78). For the BPLR group, 393 
the average w<< is 1.61 (0.86), the average w<= is 2.04 (0.83), and the average w<</w<= ratio is 394 
1.00 (0.74). For the ADHD group, the average w<< is 1.71 (1.09), the average w<= is 2.20 (0.51), 395 
and the average w<</w<= ratio is 0.89 (0.77). After regressing out the effect of age, sex, site 396 
(scanner), and average framewise displacement, there was a significant group effect for the 397 
w<</w<= ratio. Post-hoc comparisons show that the ADHD group has a lower w<</w<= ratio than 398 
the SCHZ group. 399 

The global energy gap is similar across groups 400 

The distribution of the global E-max is shown in Figure 4a. The group average E-max was 0.09 401 
(0.04) for HLTY, 0.09 (0.03) for SCHZ, 0.08 (0.03) for BPLR, and 0.09 (0.04) for ADHD. The 402 
distribution of global E-mean is shown in Supplemental Fig. 11a.  The group average E-mean 403 
was 0.02 (0.01) for HLTY, 0.02 (0.01) for SCHZ, 0.02 (0.01) for BPLR, and 0.02 (0.01) for 404 
ADHD.  405 

Network specific energy gap differs across groups 406 

As an exploratory analysis, the DK atlas parcels were assigned into the 7 canonical networks 407 
(Supplemental Fig. 10a). Significant group differences in terms of E-max and E-mean were 408 
present for certain networks, with changes not necessarily in the same direction. E-max 409 
comparison results for each network are shown in Figure 4, while those for E-mean are shown 410 
in Supplemental Fig. 11.  411 
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Significant overall group differences in terms of E-max were found for: 1) the default mode 412 
network (M2 = 8.78, p = 0.03), which did not show any significant paired differences after 413 
correction; 2) the ventral attention network, which did not show any significant paired differences 414 
after correction; 3) the somatomotor network (M2 = 15.16, p = 0.002), which had a significantly 415 
higher value for the HLTY group than the SCHZ group, and 4) the visual network (M2 = 9.56, p = 416 
0.02), which also had a significantly higher value for the HLTY group than the SCHZ group.  417 

No significant group differences in terms of E-mean were found globally or for any resting state 418 
networks. 419 

 420 

Figure 4. Energy gap metrics: Boxplots showing group E-max distributions when values are a) global, or restricted 421 
to each of the seven resting state networks, which are the b) default mode, c) frontal parietal, d) ventral attention, e) 422 
dorsal attention, f) limbic, g) somatomotor, and h) visual. The subpanel titles show the Kruskal-Wallis test results for 423 
group comparisons after controlling for age, sex, site, and average FD (Bolded ones have a significant overall group 424 
effect, p < 0.05). For comparisons with a significant overall group effect, post hoc ranksum tests were done between 425 
each group pair. Significant paired differences after Tukey correction (* p-val < 0.05) are marked by a line and star. 426 
There are main group effects for the default mode, ventral attention, somatomotor, and visual networks. Post hoc 427 
comparisons show larger E-max in the HLTY group than SCHZ group for the somatomotor and visual networks. 428 
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Effect of group specific SC on fitting results 429 

To examine how our study findings are affected by the choice of group specific SC, we repeated 430 
our analyses by fitting cross-attractor coordination matrices generated with the healthy group 431 
SC for all the groups. Results showed similar trends in the group comparisons but with less 432 
significant findings. For example, while global coupling (i.e., 9) still had a significant group 433 
effect, there was no longer a significant paired difference between HLTY and SCHZ 434 
(Supplemental Fig. 12b). The preservation of some effects, but not others support the need for 435 
group specific SC, which has a nonlinear effect on the model fitting. The results with HLTY SC 436 
are shown in Supplemental Fig. 12, 13, and 14, which corresponds to Figure 3, Figure 4, and 437 
Supplemental Fig. 11 respectively. 438 

Examining correlation with clinical symptoms 439 

Given the significant group differences in global coupling and w<</w<= ratio, we sought to 440 
determine if they were linked with specific symptoms while controlling for age, sex, site 441 
(scanner), and average FD. For ADHD participants, we correlated with their hyperactivity and 442 
attention total scores on the Adult ADHD Clinical Diagnostic Scale (ACDS). For BPLR 443 
participants, we correlated with their total score on the Young’s Mania Rating Scale (YMRS) and 444 
their total score on the 17-items Hamilton Depression Rating Scale (HAMD-17). For SCHZ 445 
participants, we correlated the parameters with their total scores on the Scale for the 446 
Assessment of Positive Symptoms (SAPS) and the Scale for the Assessment of Negative 447 
Symptoms (SANS). Through our exploratory analysis, we found that the parameter 9 was 448 
inversely correlated with the total score for SAPS (Rho = -0.51, p = 0.009). No other correlations 449 
were significant. 450 

Discussion 451 

Our results demonstrated that psychiatric disorders might be characterized by disturbances in 452 
the brain’s attractor landscape described by our BNM model. Specifically, significant group 453 
effects were found for the global coupling parameter and the E/I ratio between local excitation 454 
and inhibition parameters. All patient groups had an average global coupling value lower than 455 
that of healthy controls, with the schizophrenia group being significantly different. The E/I ratio 456 
was also different across the groups, with the schizophrenia group having a significantly larger 457 
value than the ADHD group. Further insight was revealed by comparing measures of energy 458 
gap associated with the optimal individual parameters. Specifically, there were group effects for 459 
the maximum energy gap constrained to the default mode, ventral attention, somatomotor, and 460 
visual networks. 461 

Model fitting performance across psychiatric populations 462 

The level of fit between the cross-attractor coordination matrix and the real RSFC was similar 463 
across the groups. The level of correlation is comparable to reported values from previous BNM 464 
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studies (Gustavo Deco et al., 2013; Iravani et al., 2021; Park et al., 2021; Wang et al., 2019), 465 
suggesting that the model fitting procedure works well for patient populations. 466 

Global coupling differences across psychiatric populations 467 

There was an overall group effect for the global coupling 9, with the healthy group having the 468 
highest value (9 = 3.0), followed by the ADHD (9 = 2.9) and bipolar (9 = 2.6) groups, and with 469 
the schizophrenia group having the lowest (9 = 2.4). Paired comparisons show that 9 was 470 
significantly less for schizophrenia patients than healthy controls. The finding suggests that 471 
psychopathology may be partly due to changes in the global coupling modulating connections 472 
between all regions. A recent study argued that global coupling could be considered a factor for 473 
operationalizing the balance between local and global influences on a brain region, such that a 474 
decrease in global coupling could result in less (or more) global (or local) influence (Klein et al., 475 
2021). Here we found that a decrease in global coupling for schizophrenia patients was 476 
correlated with more positive symptoms. This is consistent with the disconnection hypothesis 477 
(Friston et al., 2016) for schizophrenia, which attributes symptoms to a disruption of normal 478 
large-scale brain network dynamics. 479 

Differences in excitation-inhibition ratio across populations 480 

Our results show that the E/I ratio for healthy individuals as captured by average $!!/$!% ratio 481 
was 1.02 (0.72). Our previous work had shown that a model with a fixed $!!/$!% ratio of 2 was 482 
still able to significantly predict the real RSFC (Zhang et al., 2022), which suggests that parts of 483 
the RSFC variance may be insensitive to changes in the local parameters. Nevertheless, the 484 
improvement in prediction based on our individually fitted parameters points to the importance 485 
of capturing individual variability. 486 

The attractor landscape for the optimal individual configurations was dominated by stable spirals 487 
or damped oscillations (see Supplemental Fig. 15 to 22). While the reasoning for this 488 
observation may require further theoretical exploration, one possibility is that the ongoing 489 
activity of the resting state brain is a summation of damped oscillatory processes (Evertz et al., 490 
2022), which can arise from spontaneous transitions between the available stable spiral 491 
attractors.  492 

Our results show that schizophrenia patients have the highest E/I ratio as captured by an 493 
average $!!/$!% ratio of 1.30 (0.78), while ADHD patients have the lowest E/I ratio, with an 494 
average $!!/$!% ratio of 0.89 (0.77). Abnormal E/I balance has been consistently linked to 495 
psychiatric disorders (Sohal and Rubenstein, 2019). In the case of schizophrenia patients, an 496 
abnormally high E/I ratio can be attributed to deficits in GABA mediated inhibitory 497 
neurotransmission (Benes and Berretta, 2001; Marín, 2012). Likewise, abnormalities in E/I 498 
balance, both during development and persisting into adulthood, have been attributed to ADHD 499 
patients as a neurobiological cause (Mamiya et al., 2021). Indeed, an abnormally low E/I ratio 500 
may be a result of deficits in glutamate based excitatory neurotransmission (Cheng et al., 2017; 501 
Dramsdahl et al., 2011). 502 
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Implications of differences in energy gap metrics 503 

In terms of maximum energy gaps, there was an overall group effect for the default mode 504 
network. Relative to the healthy controls, all patient groups had lower maximum energy gaps, 505 
with the schizophrenia group having the largest abnormality. This finding is supported by studies 506 
showing default mode network abnormalities in schizophrenia patients (Bluhm et al., 2007; 507 
Ongür et al., 2010; Whitfield-Gabrieli and Ford, 2012). Since maximum energy gaps are 508 
essentially gaps between potential sub-repertoires of attractors, lower values may result in 509 
excessive transitions within a specific network (Al Zoubi et al., 2019; da Cruz et al., 2020). 510 

E-max was also significantly lower for schizophrenia subjects relative to healthy controls in the 511 
somatomotor and visual networks. Similar to the case of the default mode network, a lower E-512 
max for the somatomotor and visual networks may cause abnormal sensory activation (Li et al., 513 
2017). Findings of abnormalities in the somatomotor network agrees with one recent study 514 
focusing on the RSFC of the same dataset, which showed a link between psychopathology 515 
across the disorders and functional connectivity of the somatomotor network (Kebets et al., 516 
2019). Likewise, another study examining task-based FC of the same dataset showed group 517 
differences in regions part of the frontal parietal and somatomotor networks (Barron et al., 518 
2021). 519 

Limitations and future directions 520 

While the results of this study showed the promise of our modeling approach for understanding 521 
psychiatric disorders, there are several limitations. First, the sample size is small, especially for 522 
the patient groups. Therefore, replication of the results in a larger and independent sample is 523 
necessary. Nevertheless, given that the purpose of this study was to demonstrate the utility of 524 
the cross-attractor modeling approach in patient populations, the immediate goal was achieved.  525 
Second, the quality of the DWI and rsfMRI scans was poor, especially relative to the quality of 526 
HCP scans, which is likely why the model fitness values for the groups were slightly lower than 527 
reported for the sample of HCP subjects in our previous study (Zhang et al., 2022). While our 528 
model was able to draw helpful conclusions from the clinical grade scans, refinement of the 529 
model will benefit from having higher quality scans for patient populations. Indeed, although 530 
using a group-specific SC instead of one for all groups allowed for preserving group variations in 531 
SC in the subsequent analysis, individual SC might better account for individual differences in 532 
the structural connectome and should be used if possible. Third, while the parcellation we used 533 
was a good compromise between computational run time and biological realism, higher 534 
resolved parcellations will be explored in our future studies. Moreover, we plan to examine 535 
dynamic FC in addition to regular FC for model fitting and will evaluate how the fitted model 536 
parameters differ across groups. Dynamic FC has been shown to capture faster changing 537 
temporal dynamics (Allen et al., 2014; Cabral et al., 2017; Zhang et al., 2023). Therefore, 538 
examining changes in model parameters fitted to dynamic FC will likely reveal more insights into 539 
the pathophysiology of the patient groups. Likewise, the resolution of our parameter search 540 
space may limit the accuracy of the individual fitting results. Still, it was selected with 541 
considerations for computation time in this proof-of-concept study. Finally, the model did not 542 
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allow the local parameters to vary between regions. The assumption of uniform configurations 543 
across the brain had been made in most BNM studies due to computational limitations and the 544 
risk of overfitting (Deco et al., 2013; Schirner et al., 2018). Future studies with optimization 545 
approaches built for high dimensional fitting problems, such as the evolutionary optimization 546 
(Maile et al., 2019; Miikkulainen, 2021), may help to overcome this challenge. 547 

 548 

  549 
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