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Abstract 

The Research Domain Criteria (RDoC) framework was introduced to guide psychiatric research 
using biologically grounded, dimensional constructs of mental function. However, its current 
hierarchical domain structure remains largely unvalidated against individual-level brain imaging 
data. Building on our prior group-level work showing that data-driven bifactor models 
outperform RDoC-based models, we applied a multi-stage validation framework to Human 
Connectome Project (HCP) task fMRI data to test whether individual-level, empirically derived 
models more accurately reflect the intrinsic organization and behavioral relevance of brain 
activity. Using confirmatory factor analysis in two independent cohorts, we found that 
individual-level, data-driven bifactor models consistently outperformed RDoC-based models 
across multiple fit indices in both training and validation sets. The general factor derived from 
these models revealed a reproducible macroscale gradient spanning visual–attentional to 
auditory–default mode networks, aligning with canonical resting-state gradients and supporting 
its interpretation as a domain-general axis of large-scale brain organization. Applying 
community detection to subject-specific factor representations revealed four spatial motifs whose 
centroids corresponded to interpretable brain systems and were robustly reproduced across 
cohorts. Similarity to these centroids predicted individual task performance in working memory 
and relational reasoning, as measured by both raw accuracy and latent performance factors. To 
further assess organizational validity, we applied Mapper—a topological data analysis method—
to contrast maps, generating unsupervised graph representations of task-evoked brain activity. 
Mapper graphs annotated with data-driven centroids showed greater modularity than those 
annotated with RDoC domains, suggesting that the data-driven framework better captures the 
topological structure of individual functional brain states. Together, these findings demonstrate 
that individual-level, data-driven factor models provide a more accurate, interpretable, and 
behaviorally relevant account of brain organization than the current RDoC framework. By 
modeling inter-individual variability directly from neuroimaging data, this approach advances 
precision neuroscience and supports the empirical refinement of dimensional psychiatric 
frameworks such as RDoC.  



1. Introduction 

The Research Domain Criteria (RDoC) framework1,2 was developed by the National Institute of 
Mental Health (NIMH) to advance precision psychiatry by grounding mental health constructs in 
neurobiological systems. RDoC seeks to reconceptualize mental disorders based on dimensional 
psychological constructs and their associated neurobiological systems, moving beyond 
traditional categorical diagnoses3,4. Over the past decade, RDoC has provided a guiding ontology 
to organize psychiatric research across multiple levels of analysis—from genes to behavior—
structured into domains and constructs reflecting core functional systems, including negative 
valence, positive valence, cognitive, social, arousal/regulatory, and sensorimotor processes.  
 
Despite its utility, recent critiques argue that the RDoC framework lacks empirical specificity, 
particularly in its mapping of domains to underlying neural circuits (Beam et al., 2021). For 
example, a large meta-analysis of emotion regulation tasks found that the associated neural 
circuitry overlapped substantially across all RDoC domains, suggesting limited domain-level 
specificity in patterns of brain activation5. Beyond the emotion (or negative valence systems) 
domain, other domains—such as cognitive systems—may also be overly broad, encompassing 
heterogeneous processes that activate diverse functional brain systems6,7. Moreover, RDoC’s 
top-down hierarchical structure, based on expert consensus, has yet to be comprehensively 
validated against large-scale meta-analytic or empirical neuroimaging data. As Cuthbert8 notes, 
the RDoC working group at NIMH views the constructs as heuristic starting points—not fixed 
categories—and emphasizes that empirical refinement is a necessary step in the framework’s 
evolution. 
 
To address these limitations, researchers have increasingly turned to data-driven approaches that 
extract latent dimensions directly from neuroimaging and behavioral data—without relying on 
predefined domain boundaries6,7,9. These bottom-up methods offer more flexible modeling of 
functional brain organization and may reveal neurobiologically grounded factors that explain 
individual variability better than the RDoC framework. However, most existing approaches 
operate at the group level, leaving open questions about whether such models capture subject-
specific patterns of functional brain activation and generalize across datasets or behavioral 
phenotypes. In a prior study7, we used group-level exploratory and confirmatory factor analysis 
to compare RDoC-based models with data-driven models of whole-brain task-based fMRI 
activation. The data-driven models consistently demonstrated superior fit compared to models 
constrained by RDoC-defined assignments, and this performance advantage was replicated in an 
independent validation sample. Yet, because those analyses were limited to group-averaged data, 
it remains unclear whether the same structure holds at the level of individual participants, where 
idiosyncratic variation may be more pronounced. 
 
Validating RDoC dimensions at the level of individual brain function is critical for advancing the 
framework’s translational utility. Precision neuroscience seeks to tailor cognitive and clinical 
insights to the person by modeling inter-individual variability in brain function. Although RDoC 
was designed to support such personalized approaches, its domain definitions have not been 
validated against the fine-grained neural patterns evident at the single-subject level. Leveraging a 
comprehensive RDoC-aligned task-fMRI dataset, we evaluate whether individual-level, data-
driven representations can offer biologically grounded alternatives to fixed cognitive 
taxonomies. 



 
Here, we test whether data-driven factor models derived from individual-level task-fMRI data 
outperform RDoC-based models in explaining functional brain organization (Fig. 1). We apply 
this approach to the Human Connectome Project (HCP), which includes high-resolution task-
fMRI data from seven tasks spanning five core RDoC domains. Using confirmatory factor 
analysis (CFA), we compared the fit of four model types: data-driven bifactor, data-driven 
specific factor, RDoC bifactor, and RDoC specific factor models. Data-driven models were 
constructed by first identifying factors through individual-level exploratory factor analysis 
(EFA), followed by CFA using either bifactor or specific-factor structures. RDoC-based models 
were defined based on task-to-domain assignments, with both bifactor and specific-factor 
variants estimated to enable direct comparison of models with and without a general factor. To 
evaluate generalizability, we divided the dataset into two independent cohorts: Cohort 1 (N = 
412) and Cohort 2 (N = 329), with no related participants within cohorts. Factor models were 
derived in Cohort 1 and validated in Cohort 2—and vice versa—using a principal component–
based projection approach. 
 
To better understand the structure underlying the data-driven models, we first examined the 
spatial pattern of the general factor recovered from the data-driven bifactor model. Building on 
this, we applied two independent unsupervised approaches to the specific factors: community 
detection and a topological data analysis (TDA)-based Mapper method. In the community 
detection approach, we used modularity maximization on individual-level factor representations 
to identify shared population-wide centroids—putative latent factors or recurrent configurations 
of functional brain activity. Based on prior evidence that similarity between individual activation 
patterns and canonical network configurations is associated with task performance10, we 
hypothesized that individuals whose task-evoked activation patterns more closely aligned with 
these centroids would show better cognitive task performance. To further validate the centroids, 
we compared them with previously published group-level latent factors derived from group-
averaged task-fMRI maps in independent datasets7. 
 
We next applied a TDA-based Mapper approach11,12 to visualize the global organization of task-
related brain activation patterns across individuals. Mapper is a powerful topological method that 
produces simplified graph representations of high-dimensional data while preserving its intrinsic 
shape and connectivity. This allows us to assess whether latent structures identified by data-
driven models or RDoC domains align with the overall topology of functional brain states. To 
compare these frameworks, we annotated Mapper graphs using either RDoC task domains or the 
data-driven community centroids described above. We hypothesized that data-driven annotations 
would exhibit stronger correspondence with the topological structure of individual-level brain 
activity, providing further evidence that individual-level, data-driven models offer a more 
biologically grounded account of functional brain organization. 
 
This multi-stage validation framework enables us to assess both the internal coherence and 
external relevance of data-driven factor models compared to RDoC-based models. Our findings 
provide new insights into the dimensional organization of task-evoked brain activity and suggest 
that individual-level, data-driven models can inform empirically grounded refinements to the 
theoretical structure of the RDoC framework. More broadly, our study builds on prior work 
showing that activation patterns from diverse tasks reveal low-dimensional, continuous axes that 



transcend traditional psychological constructs—supporting a shift toward biologically 
constrained cognitive taxonomies13,14. 
 
 
 

 
 

Figure 1. Overview of approach. Using the Human Connectome Project (HCP) task-based fMRI data, we 
examined whether data-driven factor models derived from individual-level task-fMRI data outperform RDoC-
based models in explaining functional brain organization. (a) Preprocessed and parcellated contrast maps from 
seven HCP tasks were used as input. (b) Data from 741 unrelated subjects were split into two cohorts (Cohort 
1: N = 412, and Cohort 2: N = 329). (c) Four CFA model types were trained: RDoC-specific, RDoC-bifactor, 
data-driven specific, and data-driven bifactor. (d) Cross-validation across the two cohorts was conducted such 
that the models trained on one cohort were validated on held-out data from another cohort. Principal 
components analysis (PCA) was applied to data-driven specific factors from the data-driven bifactor model to 
derive the same number of factors across all individuals (detailed in Methods and Supplementary Figure 4). (e) 
Mean general factor scores from the data-driven bifactor models were mapped onto the brain. Reproducibility 
across cohorts, correspondence with resting-state gradients15, and network-wise distributions were evaluated. 
(f) To examine the underlying structure of the data-driven specific factors, an unsupervised community 
detection algorithm was used to derive communities. (g) Associations between similarity of individual task 
activation maps to specific community centroids and behavioral performance were estimated with linear 
mixed-effects models. Similarity was entered as a fixed effect, with Parental ID included as a random intercept 
to control for genetic relatedness. (h) Finally, we used the TDA-based Mapper approach to visualize the global 
organization of task contrasts and examined whether RDoC or data-driven groupings (annotation) better 
capture this structure. 
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2. Results 
 
We analyzed task-based fMRI data from the HCP dataset of 741 unrelated healthy adults, 
divided into Cohort 1 (N=412) and Cohort 2 (N=329). Each subject completed seven tasks 
spanning five core RDoC domains. The whole-brain contrast maps were parcellated into 347 
brain regions. For each subject, we treated the 24 task-contrast maps as variables and the 347 
parcellated brain regions as observations, yielding a 347 × 24 data matrix on which the factor 
analyses were performed. We first constructed individual-level RDoC-based factor models, 
defined by expert task–domain assignments, and data-driven factor models, derived from 
exploratory and confirmatory factor analysis. To examine shared variance across all task 
contrasts, we analyzed the spatial organization of the general factor recovered from the data-
driven bifactor model.  We then applied community detection to the individual-specific factor 
score maps to identify reproducible spatial motifs and evaluated their functional relevance by 
testing whether similarity between these motifs and individual activation patterns predicted task 
performance. We further characterized the global structure of inter-individual variation in task 
contrasts using topological data analysis. 
 
2.1 Data-driven bifactor models outperform RDoC models in both training and validation  
cohorts 
 
To evaluate whether individual-level data-driven models better capture the structure of task-
evoked brain activity than RDoC-based models, we applied CFA to each subject’s activation 
maps, treating contrast maps as variables and brain parcels as observations. Data-driven models 
were constructed using EFA followed by bifactor CFA, while RDoC models used fixed domain 
assignments. Model fit was assessed using four standard indices: AIC, RMSEA, CFI, and TLI. 
 
In Cohort 1, data-driven bifactor models demonstrated significantly superior model fit compared 
with RDoC-based models across all evaluated indices. For RMSEA and AIC, data-driven models 
showed markedly better fit (RMSEA: M = .159, SD = .014 vs. .207, SD = .012; t(411) = –75.10, 
p < .001, d = –3.70; AIC: M = 16,275.1, SD = 1040.3 vs. 17,898.8, SD = 1141.6; t(411) = –
79.05, p < .001, d = –3.89) (Figure 2).  Similar advantages were observed for the CFI (Data-
driven: M = .789, SD = .032; RDoC: M = .613, SD = .060; t(411) = 66.66, p < .001; d = 3.28) 
and TLI (Data-driven: M = .743, SD = .039; RDoC: M = .562, SD = .068; t(411) = 60.54, p < 
.001; d = 2.98) (Supplementary Figure 1).  
 
Swapping the training and validation cohorts yielded the same pattern: data-driven bifactor 
models consistently outperformed RDoC-based models across all indices. This replication 
supports the robustness of the data-driven bifactor solution across independent datasets. 
 
To test generalizability more directly, we projected principal components from the data-driven 
bifactor model in Cohort 1 onto Cohort 2 and repeated the procedure in reverse. These cross-
cohort validations focused on comparing the data-driven bifactor model with the canonical 
RDoC-specific model, allowing us to isolate the contribution of the general factor. In both 
directions and across all tested component numbers, the data-driven bifactor model outperformed 
the RDoC model on all fit indices (p < .001; Supplementary Tables 1 & 2). 
 



To formally compare all four model types—(i) RDoC-specific, (ii) RDoC bifactor, (iii) data-
driven specific, and (iv) data-driven bifactor—we conducted repeated-measures ANOVAs. 
Mauchly’s test revealed violations of sphericity for all fit indices (p < .001), so Greenhouse–
Geisser corrections were applied. Post hoc Tukey-adjusted comparisons confirmed that the data-
driven bifactor model consistently yielded the best fit (all **p < .001). Full results, including 
detailed statistics and pairwise comparisons, are reported in Supplementary Figure 1 and 
Supplementary Table 3. 
 
Together, these findings demonstrate that data-driven bifactor models provide a significantly 
better and more generalizable account of task-evoked brain activity than expert-defined RDoC 
models. 
 
 

 
 
Figure 2. Data-driven bifactor models consistently showed superior model fit compared to RDoC-based 
models across training and validation comparisons. Root Mean Square Error of Approximation (RMSEA) 
and Akaike Information Criterion (AIC) were used to assess model performance. (ai, bi) Within-cohort model 
fit comparison for data-driven bifactor (DD-b) and RDoC models trained using Cohort 1 and Cohort 2, 
respectively. (aii) Models derived from Cohort 1 and validated in Cohort 2 using principal component-based 
projection. (bii) Models derived from Cohort 2 and validated in Cohort 1. For validation, data-driven bifactor 
models were tested with 3 to 7 principal components (3C–7C). Violin plots show distributions of fit indices 
across individuals. Data-driven bifactor models consistently outperformed RDoC-based models across all 
comparisons. ***p < .001. 
 
 
 



 
 

2.2 Data-driven General Factor Reflects a Gradient from Visual–Attentional to Auditory–
Default Mode Networks 

We next examined the spatial topography of the general factor recovered from the data-driven 
bifactor models in both cohorts. Whole-brain general factor maps showed reproducible activation 
patterns, with prominent positive loadings in the visual and parietal cortices (Figure 3a). This 
spatial organization resembled the visual-to-somatomotor-to-auditory axis—also known as 
Gradient 2—previously described in resting-state connectivity gradients by Margulies et al.15 
(Figure 3b). These gradients describe dominant modes of functional connectivity variation in the 
cortex. 

To quantitatively assess convergence with canonical cortical hierarchies, we computed parcel-
wise correlations between the general factor maps and the first five resting-state gradients 
reported by Margulies et al.15. In both cohorts, the general factor showed its strongest positive 
association with Gradient 2 and a moderate positive association with Gradient 3. Weaker 
negative associations were observed with Gradient 4, while correlations with Gradients 1 and 5 
were not significant (Figure 3c; adjusted p-values in Supplementary Table 4). 

To further contextualize the general factor within canonical functional networks, we examined 
its distribution across the Gordon16 network parcellation. The factor exhibited a graded pattern: 
highest positive scores were observed in visual and dorsal attention networks, while lower or 
negative scores were found in the default mode, auditory, and somatomotor networks (Figure 
3d–e). 

Together, these results demonstrate that the general factor—capturing variance shared across all 
task contrasts—exhibits stable spatial organization across cohorts and aligns with established 
macroscale connectivity gradients. These findings confirm that task-derived general factors align 
with established macroscale cortical hierarchies, providing a stable and interpretable axis of 
organization that links task-evoked activity to intrinsic connectivity structure. 

 



 

Figure 3. The general factor shows reproducible topography, aligns with resting-state gradients, and 
maps onto a visual–dorsal attention to auditory–default mode axis. (a) Whole-brain spatial maps of the 
general factor from the data-driven bifactor models in both cohorts, with reproducible organization across 
cohorts. (b) Resting-state gradients 1–5 from Margulies et al.15 are shown for comparison. (c) Correlations 
between general factor maps and the resting-state gradients. The general factor was most strongly associated 
with gradient 2 in both cohorts, followed by a moderate association with gradient 3. Weaker negative 
correlations were observed with gradient 4. P-values were corrected for spatial autocorrelation. (d) Functional 
networks of cortical regions based on the Gordon parcellation. Figure adapted from Vazquez-Trejo et al.17. (e) 
Distribution of general factor scores across regions of different functional networks. Networks have been 
ordered by their median factor scores. Activation follows a gradient from the highest positive values in visual 
and dorsal attention networks to the lowest/most negative values in somatomotor, auditory, and default mode 
networks. *p < .05, ***p < .001.  



2.3 Reproducible Brain-Wide Communities in Individual Factor Representations 
 
Community detection applied to individual-specific factor scores from both cohorts replicated 
topographically distinct communities (Fig. 4a, C1–C4). The modal partition across 1,000 
Louvain iterations revealed four communities in Cohort 1 and five in Cohort 2. However, the 
final consensus solution contained five communities in both cohorts, indicating that a frequently 
occurring community (>50% of runs) in Cohort 1 was further subdivided in the consensus.  
 
Stability of the recovered community structure was high in both cohorts, with adjusted Rand 
index (ARI) values indicating strong agreement between individual runs and the consensus 
(Cohort 1: ARI = 0.893, SD = 0.127; Cohort 2: ARI = 0.956, SD = 0.095). These spatial patterns 
were consistent across both training and validation cohorts, with high reproducibility (Pearson 
correlation coefficient, r = .5-.99) between matched centroids of Cohort 1 and Cohort 2 (Fig. 4b). 
Each community centroid exhibited a characteristic spatial topography (Fig. 4c): C1 was 
predominantly prefrontal and occipital activation, C2 engaged somatomotor and subcortical 
regions, C3 included the parietal cortex and fusiform gyri, and C4 was centered in temporal and 
subcortical structures.  
 
To evaluate external validity, we compared these data-driven centroids with group-level factors 
from an independent dataset based on group-averaged task-fMRI maps from Neurovault7. The 
centroids showed significant and differential alignment with both data-driven and RDoC-specific 
factor maps from that study (Fig. 5), supporting the interpretability and robustness of the 
identified community structures. Notably, centroids in both cohorts aligned more strongly (both 
positively and negatively) with RDoC-defined factors related to the sensorimotor systems and 
positive valence systems, and less so with those for social processes, cognitive systems, or 
negative valence systems (Figure 5aii, bii). This suggests that the former domains are associated 
with more stereotyped and robust functional architectures in the HCP tasks, making them more 
detectable in both individual- and group-level analyses. 
 
To further evaluate convergence with other established functional brain topographies, we 
correlated task-derived community centroids with the gradients of resting-state fMRI reported by 
Margulies et al.15. In both cohorts, the centroids showed significant associations with the first 
four gradients. Specifically, centroid 1 in Cohort 1 and 1a in Cohort 2 are positively associated 
with the principal gradient, gradient 1. Additionally, centroid 1 in Cohort 1 is positively 
associated with gradient 2. Centroid 1b in Cohort 2 is positively associated with gradients 2 and 
4 and negatively associated with gradient 3. Centroid 2 in both cohorts is positively associated 
with gradient 3 and negatively associated with gradients 1 and 2. Finally, centroids 3 and 4 in 
both cohorts are negatively and positively associated with gradient 4, respectively.  All p-values 
were corrected for multiple comparisons using the Benjamini–Hochberg false discovery rate 
(FDR) procedure (adjusted values in Supplementary Table 5). These results support the 
interpretation of task-derived communities as canonical axes of functional brain organization, 
grounded in both task and resting-state systems. 
 
Finally, we assessed within-subject consistency of community assignments by computing 
Shannon entropy of factor map distributions across communities. In both the four-community 
solution from Cohort 1 (mean = 1.83, median = 1.92; maximum possible = 2.00) and the five-



community solution from Cohort 2 (mean = 2.13, median = 2.24; maximum possible = 2.32), 
entropy values were close to the theoretical maximum. This indicates that most participants 
exhibited diverse factor–community mappings, with maps distributed across multiple modules 
rather than concentrated in a single one. 
 
 

 
 
Figure 4. Community detection using data-driven factors reveals reproducible and functionally distinct 
factor communities across cohorts. (ai) Consensus clustering of correlation matrices from data-driven factor 
scores in Cohort 1 identified four stable communities. (aii) Community detection in Cohort 2 yielded a similar 
five-community structure, with Community 1 from Cohort 1 corresponding to two communities (1a, 1b). (b) 
Correlations between community centroid maps derived from Cohort 1 and Cohort 2. Centroids from both 
cohorts exhibit strong cross-cohort correspondence, particularly for C2, C3 and C4 (r > 0.99). C1-4: 
Community 1-4. (ci, cii) Brain maps of the resulting community centroids from Cohort 1 and Cohort 2, 
respectively. Each centroid reflects the mean spatial topography of factor maps assigned to that community. 



Consistent patterns of activation were observed across cohorts, indicating stable and reproducible community 
structure. Warm colors denote positive loadings; cool colors denote negative loadings.  
 
 

 

 
 
Figure 5. Community centroids show high cross-cohort correspondence and align with specific factors 
from group-level bifactor models. (a) Correlation of community centroids from Cohort 1 with group-level 
bifactor model factors from Quah et al.7. (ai) Correlations with data-driven specific factors. (aii) Correlations 
with RDoC-based specific factors. (b) Correlation of community centroids from Cohort 2 with group-level 
bifactor model factors from Quah et al.7. (bi) Correlations with data-driven specific factors. (bii) Correlations 
with RDoC-based specific factors. Columns for (a) and (b) have been ordered from highest total correlation 
coefficient to lowest. (ci–cii) Correlations between task-derived community centroids and the resting-state 
connectivity gradients from Margulies et al.15.  P-values have been adjusted for spatial autocorrelation18. 
Additionally, p-values here were corrected for multiple comparisons using the Benjamini–Hochberg false 
discovery rate (FDR) procedure. C1-4: Community 1-4; M: Motor; L: Language; Att: Attention; ToM: 
Theory-of-Mind; RV: Reward Valuation; WM: Working Memory; SP: Social Processing; NV: Negative 
Valence. G1-5: Gradient 1-5. *padj < .05, **padj < .01; ***padj < .001. 
 
 
 
 
 
 
 
 
  



2.4 Community Alignment Predicts Individual Cognitive Performance 
 
We next tested whether individual alignment with community-level factor representations was 
associated with behavioral performance on working memory and relational reasoning tasks. 
These tasks were selected because they were the only ones in the HCP dataset with well-
quantified and sufficiently variable performance measures (see Supplementary Methods 1). 
Other tasks lacked usable metrics, showed ceiling effects, or exhibited low variability, limiting 
their suitability for individual-level correlation analyses. 
 
To maximize statistical power, this analysis included all participants from the HCP dataset (N = 
962). For each subject, we computed two similarity indices between their average task activation 
map and a community centroid: (i) Pearson correlation and (ii) continuous Dice similarity. We 
selected centroids from Community 4 (C4) and Community 3 (C3) in Cohort 1, as these showed 
the strongest correlations with group-level factors related to working memory and attention, 
respectively (Figure 5bi). Associations between similarity and behavior were estimated using 
linear mixed-effects models, with Parental ID included as a random intercept to control for 
genetic relatedness. 
 
Higher alignment to community centroids was significantly associated with better behavioral 
performance. Specifically, similarity to the C4 centroid was positively associated with accuracy 
on the working memory (β = 0.115, SE = 0.030, t(941) = 3.81, p*** <.001; Dice: β = 0.174, SE = 
0.032, t(957) = 5.68, p***< .001). Similarly, similarity to the C3 centroid was positively 
associated with relational reasoning accuracy (β = 0.088, SE = 0.032, t(957) = 2.72, p** = .007). 
The corresponding Dice-based association was positive but marginal (β = 0.065, SE = 0.033, 
t(953) = 1.95, p = .051) (Figure 6ai, bi; full Dice results in Supplementary Figure 3). 
 
We next examined whether these similarity measures also predicted latent cognitive ability, 
derived using EFA from both accuracy and reaction time metrics. For working memory, the 
extracted factor loaded negatively on accuracy and positively on reaction time, indicating that 
higher scores reflected slower and less accurate performance. To aid interpretation, we inverted 
these scores so that higher values corresponded to better performance (i.e., faster and more 
accurate responses). For relational processing, both accuracy and reaction time loaded positively, 
meaning higher scores reflected greater accuracy with longer response times—a speed–accuracy 
tradeoff factor. 
 
Similarity to the C4 and C3 centroids significantly predicted these latent performance factor 
scores (Figure 6aii, bii). Specifically, similarity to the C4 centroid was positively associated with 
working memory factor scores (Pearson’s: β = 0.083, SE = 0.032, t(946) = 2.63, p** = .009; 
Dice: β = 0.131, SE = 0.032, t(942) = 4.06, p*** < .001), and similarity to the C3 centroid was 
positively associated with relational processing factor scores (Pearson’s: β = 0.198, SE = 0.032, 
t(956) = 6.14, p*** < .001; Dice: β = 0.190, SE = 0.033, t(952) = 5.73, p*** < .001).  
 
These findings confirm that individual similarity to shared spatial motifs derived from data-
driven communities is not only associated with raw task accuracy but also reflects generalizable 
latent cognitive abilities across tasks. Dice-based results are shown in Supplementary Figure 3. 
 



 
 
Figure 6. Similarity between individuals’ task contrast and specific community centroids predicts behavioral 
performance in mixed-effects models. Similarity (quantified by Pearson correlation) was entered as a fixed 
effect, with Parental ID included as a random intercept to control for genetic relatedness. Higher similarity 
between an individual’s average task map and community centroid was associated with better performance on 
the working memory and relational processing tasks. This association was observed both in raw task accuracy 
(panels ai–ii) and in task performance factor scores derived using EFA (panels bi–ii). Subpanels (i) show 
predictions for raw accuracy; subpanels (ii) show predictions for latent performance factor scores derived via 
EFA of accuracy and reaction time (working-memory factor inverted so higher = more accurate but slower 
responses). 
 
 
2.5 Data-driven Community Centroids Capture Topological Structure Better than RDoC 
Domains 
 
To evaluate how well different annotation schemes capture the global organization of individual 
brain activity, we applied the Mapper algorithm from topological data analysis to the contrast 
maps in Cohort 1 and Cohort 2, separately. Mapper constructs a simplified graph representation 
of high-dimensional data by applying binning and local clustering to a low-dimensional 
embedding. In the resulting graphs, nodes represent clusters of similar contrast maps, and edges 
connect nodes with overlapping contrasts. We annotated each node using two alternative 
schemes: (i) RDoC domain labels, based on the task-condition mappings; and (ii) data-driven 
community centroids, based on the highest spatial correlation between contrast maps and 
centroid patterns (Figure 7a). 
 
To assess the distinctiveness of each annotation scheme, we computed node-wise assignment 
proportions and their correlation matrices across nodes (Fig. 7b). For each Mapper node, we 
calculated the proportion of contrasts assigned to each RDoC domain or data-driven community. 
The resulting correlation matrices reflect how often different categories co-occur within the same 
topological neighborhood. Compared to RDoC annotations, data-driven communities showed 
more moderate off-diagonal correlations, indicating more balanced and less redundant structure. 
In contrast, RDoC domains showed extreme values (high highs and low lows), reflecting greater 
inconsistency—some domains were overrepresented across nodes, while others were nearly 
absent. This pattern suggests that RDoC labels are more unevenly distributed in the intrinsic 
topological space, whereas data-driven annotations yield more consistent and balanced partitions 
of brain states. 
 



Crucially, across both cohorts, Mapper graphs annotated with community centroids exhibited 
higher modularity than those annotated with RDoC domains (Fig. 7c). This indicates that the 
community-based annotation more closely aligns with the underlying topological organization of 
individual contrast maps. Together, these findings support the conclusion that data-driven 
community centroids offer a more accurate and functionally coherent framework for 
summarizing task-evoked brain activity than expert-defined RDoC categories. 
 
 

 
 
Figure 7. Topological analysis of individual contrast maps using Mapper. (a) Mapper graphs constructed 
from individual contrast maps from Cohort 1 and Cohort 2, annotated using either data-driven community 
centroids (top) or RDoC domain assignments (bottom). Each node represents a cluster of similar activation 
patterns, with edges connecting nodes sharing overlapping contrast maps. (b) Correlation matrices showing the 
similarity between annotation groups, based on node-wise proportions. For each node in the Mapper graph, we 
calculated the proportion of contrasts belonging to each community or RDoC domain. The resulting matrices 
reflect how often different annotations co-occur within nodes. Lower off-diagonal correlations in the data-
driven models indicate that the communities are more distinct and less overlapping. The final column (“Sum”) 
shows how much each group overlaps with all others, with lower values indicating greater separation. (c) Data-
driven community annotations exhibit higher Mapper graph modularity than RDoC domain labels. Violin plots 
show the distribution of modularity values for data-driven (DD, blue) and RDoC-based (red) annotations 
applied to Mapper graphs in Cohort 1 and Cohort 2. Modularity quantifies the degree to which annotations 
align with topological community structure. In both cohorts, data-driven annotations yielded significantly 
higher modularity, indicating stronger alignment with intrinsic graph structure. ***p < .001. 
 
 
 
 
 



3. Discussion 

3.1 Validating the RDoC at the single-participant level 
The RDoC framework has been widely applied in psychiatric neuroimaging research, yet its 
empirical grounding—particularly the mapping between functional domains and neural 
circuits—remains underdeveloped. Here, we present a latent factor analysis of task-based fMRI 
data aimed at refining RDoC to more closely align with the functional organization of brain 
activity and to identify the large-scale organization of task-evoked brain circuits. While prior 
efforts have derived latent dimensions from neuroimaging and behavioral data at the group level, 
it is unclear how well such models capture subject-specific activation patterns or generalize 
across datasets and behavioral phenotypes. 
 
Our study systematically evaluated the structure, generalizability, and behavioral relevance of 
data-driven factor models estimated at the individual level, thereby offering a precision 
neuroscience framework for modeling brain-behavior associations. These models consistently 
outperformed RDoC-based alternatives in statistical fit, replicated across cohorts, and predicted 
task performance. The general factor derived from the bifactor models revealed a reproducible 
macroscale gradient from visual–attentional to auditory–default mode networks, aligning with 
canonical resting-state gradients and providing evidence for a domain-general activation 
dimension. Beyond the general factor, the data-driven models also recover stable, 
topographically distinct functional motifs that are associated with performance on high-demand 
cognitive tasks. Together, these findings provide a scalable framework for advancing precision 
neuroscience and refining psychiatric ontologies such as RDoC. 
 
We first showed that bifactor models derived from EFA of individual-level tfMRI data offered 
significantly better model fit than RDoC-based models across multiple indices (AIC, RMSEA, 
CFI, TLI). This advantage was consistent across two independent cohorts, and held even when 
data-driven solutions from one cohort were projected onto the other. These results replicate prior 
group-level findings7 and extend them by showing that subject-specific activation patterns retain 
a coherent, generalizable structure. This supports recent meta-analytic work suggesting that data-
driven ontologies yield more reproducible brain–behavior mappings than theory-defined 
constructs6,14. 
 
3.2 Evidence for the general factor 
The general factor itself reflected a core axis of task activation, with positive scores in visual, 
dorsal attention, and frontoparietal networks, and negative scores in default mode, auditory, and 
somatomotor networks. This configuration aligns closely with Gradient 2 from Margulies et al.15, 
and supports a unifying framework that shapes both spontaneous and evoked activity. 
Functionally, the emergence of a single, brain-wide factor spanning multiple task domains 
supports the presence of a domain-general activation dimension7. This interpretation is supported 
by prior work showing that the dominant component of variance across diverse tasks reflects a 
shared visual-dorsal attention activation coupled with concomitant auditory–default mode 
deactivation19. More broadly, these findings reinforce emerging views that the brain’s functional 
architecture is best described along continuous gradients and hierarchies, rather than rigid 
domain partitions20. Our general factor integrates systems often cast as antagonistic (e.g., visual–
attention vs. default mode, task-positive vs. task-negative) into a unified continuum. 
 



 
3.3 Evidence for specific motifs and communities 
We next applied community detection to uncover shared structure among specific factors. This 
analysis identified four stable community motifs in Cohort 1, each with distinct spatial 
signatures. In Cohort 2, these patterns were replicated, with one community (C1) subdivided into 
two closely related subcommunities (C1a and C1b). The most prominent community (C1) 
involved co-activation of primary visual cortex and DMN regions—notably posterior cingulate 
and medial prefrontal cortex. This topography aligns with the principal gradient of cortical 
organization15 and with the first complex principal component in resting-state data21, supporting 
its interpretation as a core organizational axis of human brain function. The presence of visual–
DMN co-activation likely reflects the strong visual demands embedded in many HCP tasks. 
 
Importantly, these spatial motifs (or communities) were reproducible across cohorts and aligned 
with both group-level data-driven factors and canonical task contrasts. This suggests that they 
reflect recurrent, interpretable modes of co-activation, transcending individual tasks or datasets. 
The presence of these discrete motifs supports the formulation that large-scale brain activity can 
be decomposed into a relatively small number of interpretable functional modes. Notably, these 
communities aligned most strongly with RDoC domains associated with sensorimotor and 
positive valence systems, and less so with cognitive, social, or negative valence domains—
replicating a pattern seen in our prior group-level work7. The stronger alignment for 
sensorimotor and reward domains may reflect their greater spatial stereotypy, consistent with 
prior meta-analyses22,23, while more distributed and context-sensitive processes (e.g., negative 
valence, cognitive control) may resist simple spatial encapsulation6,24. 
 
Our finding that task-derived community centroids align with the principal gradients of resting-
state functional connectivity described by Margulies et al.15 provides strong evidence for their 
biological validity. The positive alignment of fronto-occipital centroids (C1/1a) with the 
principal gradient indicates that the task-derived factors here recapitulate the unimodal–to–
transmodal axis of brain organization observed at rest, whereas the associations of centroids 2–4 
with higher-order gradients indicate sensitivity to additional axes of functional specialization 
beyond the dominant unimodal–transmodal spectrum. The reproducibility of these relationships 
across independent cohorts further supports that the task-derived centroids here reflect stable, 
canonical dimensions of brain functional organization. Together, these findings support the view 
that individual-level task activation patterns are constrained by the same large-scale topographic 
gradients that govern intrinsic functional connectivity. 
 
3.4 Behavioral associations 
Behaviorally, we found that individuals whose activation patterns aligned more closely with 
certain centroids—especially C4 and C3—showed better performance on working memory and 
relational reasoning tasks. These associations held for both raw accuracy and EFA-derived latent 
performance scores. This supports the idea that spatial similarity to population-level motifs, 
rather than overall activation magnitude or connectivity, offers a meaningful index of task-
relevant network engagement. These results extend prior findings10,25 by demonstrating that 
centroid similarity predicts trait-like cognitive variation and may offer a scalable approach to 
individualized phenotyping. 
 



3.5 Mapper and topological validation 
Finally, we used TDA to show that data-driven community centroids better capture the 
functional organization of task-evoked brain states than predefined RDoC domains. Mapper 
graphs annotated with community centroids exhibited higher modularity, suggesting better 
alignment with the data’s natural topological structure. In contrast, RDoC annotations—
especially those for cognitive and valence domains—showed greater inter-domain overlap and 
more uneven distribution. These findings echo prior work showing that Mapper reveals modular 
and behaviorally relevant brain states11, and they reinforce the view that empirically derived 
models offer more topologically coherent functional partitions than expert-defined taxonomies. 
 
3.6 Implications for refining RDoC 
These findings offer actionable insights for the refinement of cognitive ontologies such as RDoC. 
First, our results suggest that RDoC constructs could benefit from greater empirical grounding 
through systematic bottom-up modeling of neuroimaging data at the individual level. Instead of 
defining domains solely through top-down consensus or behavioral theory, a hybrid approach 
that integrates expert annotation with data-driven spatial motifs may yield more biologically 
valid and reproducible constructs. Second, the consistent emergence of a domain-general factor 
spanning multiple tasks points to the utility of incorporating continuous dimensions—such as 
macroscale activation gradients—alongside discrete domain categories. Such gradients may 
serve as organizing axes that unify multiple constructs or identify shared variance across 
domains. Third, adopting a graph-based or topological lens, as shown through Mapper analysis, 
provides a promising route for assessing whether cognitive taxonomies align with the intrinsic 
geometry of brain function. We propose that future iterations of RDoC include empirical 
benchmarking tools such as factor coherence, spatial reproducibility, behavioral relevance, and 
topological modularity, enabling systematic validation and revision of the proposed domains. 
Together, these principles can help re-anchor psychiatric constructs in neurobiologically 
informed, scalable frameworks—advancing RDoC’s original mission of building a precision 
mental health science. 
 
3.7 Limitations & Future directions 
Several limitations should be acknowledged. First, the HCP dataset includes only healthy young 
adults and a constrained set of tasks. Generalization to clinical populations and ecologically valid 
paradigms remains a critical next step. Second, future work could explore nonlinear embeddings 
or alternative dimensionality reduction techniques. Third, while Mapper offers rich visualizations 
of data topology, its parameters (e.g., resolution, gain) are not biologically grounded and may 
influence results. Future work should evaluate parameter sensitivity, cross-dataset replication, 
and developmental or genetic correlates of the identified motifs. Fourth, while our models 
predict behavior, variability in reaction time can itself modulate BOLD responses26, which may 
confound associations between factor scores and latent performance. Finally, this study did not 
include tasks targeting underrepresented RDoC domains (e.g., arousal/regulatory systems), nor 
did it integrate multimodal data (e.g., genetics, physiology, behavioral traits), which would 
further strengthen and contextualize our conclusions. 
 
3.8 Conclusions 
Despite these limitations, our findings provide strong evidence that individual-level, data-driven 
factor models outperform predefined RDoC models in explaining the structure of task-evoked 



brain activity. These models reveal two complementary levels of organization: (i) a reproducible 
general factor that reflects a macroscale gradient spanning visual–attentional to auditory–default 
mode networks, and (ii) topographically distinct, behaviorally relevant communities that 
generalize across individuals and align with large-scale functional gradients. By embedding 
subject-specific brain activation patterns in scalable, interpretable, and empirically derived 
frameworks, this work offers a concrete step toward developing neurobiologically grounded 
cognitive ontologies and supports ongoing efforts to refine and operationalize RDoC in the 
service of precision psychiatry27. 
 
 
 
4. Methods 
 
4.1 Study Cohort.  We used task-fMRI data from the publicly available Human Connectome 
Project (HCP) Young Adult dataset28. A total of 962 healthy adults aged 22–35 years with 
complete task-fMRI data across seven tasks were included; participants with missing data for 
any task were excluded. Two age-, sex-, race-, and income-matched cohorts were defined for 
cross-validation: Cohort 1 (N = 412; 52.4% female; mean age = 28.5 years; racial composition: 
65.7% White, 14.1% Black, 10.7% Hispanic/Latino, 7.5% Asian, 1.9% Other; income 
distribution: 46.5% high / 53.5% low) and Cohort 2 (N = 329; 55.0% female; mean age = 28.8 
years; racial composition: 69.3% White, 13.5% Black, 8.9% Hispanic/Latino, 7.1% Asian, 1.2% 
Other; income distribution: 54.3% high / 45.7% low). All participants were unrelated within each 
cohort. 
 
The HCP task battery included seven paradigms aligned with core RDoC domains: (1) a 2-back 
task assessing working memory; (2) a motor response task targeting motor function; (3) an 
auditory story task probing language processing; (4) a stimulus matching task assessing 
emotional processing; (5) a social cognition task probing theory of mind; (6) a relational 
matching task assessing higher-order reasoning; and (7) a gambling task assessing reward 
sensitivity. These tasks are described in detail by Barch et al.29. 
 
4.2 Contrast Map Processing. Individual-level task contrast maps were downloaded from the 
HCP database in CIFTI format. For each participant, contrast maps were computed by 
combining parameter estimates from both the left–right (LR) and right–left (RL) phase-encoding 
runs. This approach integrates data from independent runs into a single subject-level contrast, 
helping to mitigate run-specific dependencies. The resulting maps were processed and 
parcellated into a total of 347 regions: 333 cortical parcels from the Gordon atlas16 and 14 
subcortical regions from the Harvard–Oxford atlas30. These atlases were selected for their fine-
grained, functionally informed parcellations, which have been widely validated in both task-
based and resting-state fMRI studies. 
 
4.3 Factor Models. We compared four model types: (i) an RDoC-specific factor model 
(canonical RDoC model), (ii) an RDoC bifactor model, (iii) a data-driven specific factor model, 
and (iv) a data-driven bifactor model. In the bifactor variants, a general factor (onto which all 
task contrasts loaded) was included alongside domain- or EFA-derived specific factors. In the 
specific factor variants, only domain- or data-driven specific factors were modeled, without a 



general factor. The general factor captures variance shared across all task contrasts, while 
specific factors reflect variance unique to subsets of contrasts. For both bifactor models, 
orthogonality constraints were imposed to ensure separation between shared and specific 
variance components31. 
 
Data-driven models were estimated using a two-step process involving exploratory factor 
analysis (EFA) followed by confirmatory factor analysis (CFA). In contrast, RDoC-based 
models were estimated directly via CFA, using predefined domain-to-task assignments. All 
factor analyses were implemented in R (version 4.3.0) using the psych (version 2.3.3) and lavaan 
(version 0.6.15) packages. 
 
4.3.1 Data-driven Factor Analysis for each subject.  Subject-specific factor models were derived 
using the following steps: (1) Horn’s parallel analysis to determine the optimal number of 
specific factors (see below); (2) EFA using principal axis factoring and oblimin rotation; and (3) 
CFA specifying either a bifactor or specific factor structure. 
 
Each participant’s data consisted of 24 contrast maps (i.e., task conditions), treated as variables, 
and 347 brain parcels (333 cortical + 14 subcortical) as observations—resulting in a 347 × 24 
matrix per subject. EFA was applied to model the covariance structure among the contrast maps 
based on spatial similarity across parcels. A high factor loading indicated that a task contrast’s 
spatial activation pattern closely aligned with the topography represented by that factor. 
 
The number of factors to extract was determined using Horn’s parallel analysis32, which 
identifies the point where eigenvalues from the real data intersect those from randomly generated 
data33. Principal axis factoring with oblimin rotation was used to allow for weak correlations 
among factors. In the subsequent CFA, we used robust maximum likelihood estimation to 
account for non-normality. Two data-driven models were specified: (i) a bifactor model, where 
all contrasts loaded on a general factor and one or more EFA-derived specific factors; and (ii) a 
specific factor model, where only EFA-derived specific factors were included. Consistent with 
prior literature34, specific factors were defined using a threshold of absolute loadings ≥ 0.4. 
 
4.3.2 RDoC Domain Factor Analysis for each subject.  RDoC-based models were constructed by 
grouping whole-brain activation maps into domain-specific factors, based on expert mappings of 
task descriptions to RDoC domains (Supplementary Table 6). As with data-driven models, we 
tested both (i) a specific factor model (contrasts loaded only onto their assigned RDoC domains) 
and (ii) a bifactor model (all contrasts additionally loaded onto a general factor). All RDoC-
based models were estimated using CFA with robust maximum likelihood estimation (Fig. 2ai 
and 2aii). 
 
4.4 Training and Validation Strategy.  To ensure a fair comparison between data-driven and 
RDoC-based models, we derived the data-driven factor structure from one cohort and tested its 
generalizability in the other (Supplementary Fig. 4). This cross-cohort approach avoids 
circularity, as data-driven models are inherently optimized to fit the data they are trained on. One 
cohort was designated as the training set, from which bifactor models were estimated via EFA 
and CFA. Specific factors were then reduced via principal component analysis (PCA) to extract 
the top 3–7 components, yielding a low-dimensional representation of the training data. 



 
These PCA components were projected onto the validation cohort by computing a correlation 
matrix between individual activation maps and the training-derived component scores. A 
dynamic threshold, set to the p-th quantile (p = 1/k, where k is the number of components), was 
applied to assign activation maps to components, ensuring balanced factor assignment. This 
generated individual-level factor scores in the validation set, grounded entirely in the training 
cohort’s structure. 
 
In contrast, RDoC-based models—being predefined—were directly estimated in each cohort 
using CFA, with identical factor assignments across training and validation analyses. 
 
4.5 Model Performance. Model fit was evaluated using robust versions of the Root Mean Square 
Error of Approximation (RMSEA), Comparative Fit Index (CFI), and Tucker–Lewis Index 
(TLI), which account for potential non-normality in the data. Additionally, we used the Akaike 
Information Criterion (AIC), an information-theoretic measure that balances model fit with 
complexity. Lower AIC values indicate a more favorable trade-off between goodness of fit and 
parsimony35. 
 
4.6 Community Detection.  To identify shared structure across individuals’ factor 
representations, we applied Louvain modularity maximization36 to the specific factor scores 
derived from the data-driven bifactor models. Subject-level factor maps were concatenated into a 
matrix of size (subjects × factors) × regions, and community structure was estimated using an 
asymmetric treatment of negative edges. This variant preserves meaningful modularity by 
asymmetrically penalizing anti-correlated nodes. To address the degeneracy of modularity (𝑄) 
solutions, we ran the algorithm 1,000 times with a fixed resolution parameter (γ = 1). Each run 
produced a community assignment and associated modularity value. We then computed an 
agreement matrix based on the frequency of co-assignment across runs, weighted by the 
modularity of each partition. A consensus clustering procedure was applied to this matrix to 
derive a stable community solution. Stability was quantified as the adjusted Rand index (ARI) 
between each run’s partition and the consensus solution, summarized by the mean and standard 
deviation across all runs. 
 
The resulting communities grouped factor maps with similar spatial profiles. We computed 
centroid maps—the average activation pattern within each community—for use in downstream 
analyses, including cross-cohort comparisons and behavioral prediction. 
 
4.6.1 Within-Subject Consistency of Community Assignments. To evaluate the consistency of 
community assignments across factor maps from the same individual, we computed subject-wise 
Shannon entropy. For each participant, we tallied how many of their factor maps were assigned 
to each community and converted these counts into a probability distribution. Entropy was then 
computed as: 
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where 𝑝! is the proportion of maps assigned to the i-th community, and 𝑘 is the total number of 
detected communities. Entropy approaches zero when all maps from an individual fall within a 
single community and reaches a maximum log"(𝑘) when maps are evenly distributed across 
communities. 
 
4.7 Topological Data Analysis. We applied the Mapper algorithm11,37, a TDA method, to 
visualize the intrinsic structure of individual task-evoked brain activation. Mapper constructs a 
graph-based summary of high-dimensional data, revealing topological features that are often 
missed by traditional dimensionality reduction techniques. 
 
We began by computing a pairwise Euclidean distance matrix across all contrast maps. A k-
nearest neighbor (kNN) graph was constructed to approximate the underlying data manifold, 
with k set to the square root of the number of data points, following the empirical rule-of-
thumb38. From the kNN graph, we computed geodesic distances between all data points to better 
capture the intrinsic structure while preserving local neighborhood relationships. Non-Metric 
Multidimensional Scaling (NMDS) was then applied using the Sammon stress criterion to obtain 
a low-dimensional embedding for filtering, emphasizing preservation of local distances. 
 
Mapper was run on this embedded space using overlapping bins and local clustering. The 
resulting graph consisted of nodes—representing local subgroups of contrast maps—and edges, 
which indicated shared data points across nodes. 
 
Nodes were annotated using either RDoC domain labels (based on task-condition mappings; 
Supplementary Table 6) or data-driven community centroid labels (assigned via maximal spatial 
correlation). To assess the stability of modularity under both annotation schemes, we performed 
jackknife resampling across subjects. For each iteration, one subject was omitted, and Mapper 
was re-run on the remaining participants using identical parameters (number of bins, overlap, 
resolution, gain, k, and embedding dimensionality). Modularity was then computed for each 
resampled graph after annotating nodes with either RDoC or community labels. This produced 
empirical distributions of modularity values for both labeling schemes, separately for each 
cohort. 
 
4.8 Statistical Analysis of Model Fit.  To compare model performance, paired t-tests were 
conducted to compare the data-driven bifactor and RDoC models within each cohort for both 
training and cross-validation analyses. For the training analyses to compare all four model types 
(data-driven specific, data-driven bifactor, RDoC specific, and RDoC bifactor), we conducted 
repeated-measures ANOVAs separately for each fit index: robust RMSEA, robust CFI, robust 
TLI, and AIC. Model type was treated as a four-level within-subject factor, with each participant 
contributing a set of fit indices for all model types. Mauchly’s test indicated that the assumption 
of sphericity was violated for all indices; therefore, Greenhouse–Geisser corrections were 
applied to the degrees of freedom in all tests. ANOVAs were followed by Tukey-adjusted 
pairwise comparisons to evaluate differences between model families. All analyses were 
implemented in R (version 4.3.0) using the afex (version 1.5.0) and emmeans (version 1.11.2.8) 
packages. 
 



4.9 Correlations Between Factor Scores.  We assessed the topographical stability of community 
centroids by computing parcel-wise Pearson correlations between centroids derived from Cohort 
1 and Cohort 2. To evaluate alignment with existing cognitive ontologies, we also correlated 
cohort-specific centroid maps with previously published group-level activation maps from an 
independent dataset7, encompassing both data-driven and RDoC-based representations. 
 
All correlations were performed across the 347 parcels using unthresholded factor score maps. 
Statistical significance was evaluated using BrainSMASH18, which generates spatially 
autocorrelated null maps that preserve the intrinsic spatial structure of the data. P-values were 
corrected for spatial autocorrelation (see Supplementary Table 7). Inter-parcel distances for 
BrainSMASH were computed using Euclidean distances between the MNI-space centroids of 
each parcel. All statistical tests were two-tailed. 
 
4.10 Task Performance Correlates.  We tested whether the similarity between an individual’s 
contrast map and the corresponding community centroid predicted cognitive task performance. 
Similarity was quantified using both Pearson correlation and continuous (soft) Dice coefficients. 
While correlation captures linear similarity, soft Dice scores account for spatial overlap weighted 
by magnitude. For each task contrast map, the continuous Dice similarity39 was computed as: 
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where 𝑥 is the centroid vector and 𝑦 is the individual’s contrast map. This formulation 
generalizes the traditional Dice coefficient to continuous, real-valued data, allowing sensitivity to 
both spatial alignment and intensity variation. 
 
Associations between map–centroid similarity and behavior were estimated using linear mixed-
effects models. The fixed effect was map–centroid similarity, and a random intercept for Parental 
ID (defined as the combination of maternal and paternal IDs) accounted for genetic relatedness. 
Behavioral outcomes included both raw task accuracy and an EFA-derived latent performance 
score (described below). We focused on the working memory and relational reasoning tasks, 
which are the only HCP tasks with well-defined individual-level behavioral metrics (see 
Supplementary Methods 1 for discussion of other tasks). 
 
To derive a general measure of task performance, we conducted EFAs separately for the working 
memory and relational tasks, analyzing accuracy and median reaction time using principal axis 
factoring. A single latent factor was extracted, capturing shared variance among the behavioral 
measures. Each participant’s score on this factor was used as an index of their overall working 
memory/relational reasoning performance. 
 
4.11 Sex Effects Analysis. To assess potential sex differences in task-evoked brain activation, we 
performed parcel-wise regressions of activation level on sex across all 24 contrasts and 347 
parcels in each cohort. After false discovery rate (FDR) correction, 9.1% of tests remained 
significant in Cohort 1 and 2.4% in Cohort 2. Given the limited reproducibility and small effect 
sizes, sex was not included as a covariate in the main analyses in order to preserve model 



parsimony and statistical power. Future work may explore demographic influences such as sex in 
more depth within this framework. 
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