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2CENTAI Institute, Turin, Italy

3Program in Cognitive Science, Indiana University, Bloomington, IN, USA
4Department of Informatics, Indiana University, Bloomington, IN, USA

5Institut de Neurosciences des Systèmes (INS), UMR 1106,
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Accurately identifying individuals from brain activity—functional fingerprinting—is a powerful
tool for understanding individual variability and detecting brain disorders. Most current approaches
rely on functional connectivity (FC), which measures pairwise correlations between brain regions.
However, FC is limited in capturing the higher-order, multiscale structure of brain organization.
Here, we propose a novel fingerprinting method based on homological scaffolds, a topological repre-
sentation derived from persistent homology of resting-state fMRI data. Using data from the Human
Connectome Project (n = 100), we show that scaffold-based fingerprints achieve near-perfect iden-
tification accuracy (∼ 100%), outperforming FC-based methods (90%), and remain robust across
preprocessing pipelines, atlas choices, and even with drastically shortened scan durations. Unlike
FC, in which fingerprinting features localize within networks, scaffolds derive their discriminative
power from inter-network connections, revealing the existence of individual mesoscale organizational
signatures. Finally, we show that scaffolds act as bridges between redundancy and synergy, by bal-
ancing redundancy along high-FC border edges with high synergy across the topological voids that
the cycles define. These findings establish topological scaffolds as a powerful tool for capturing indi-
vidual variability, revealing that unique signatures of brain organization are encoded in the interplay
between mesoscale network integration and information dynamics.

I. INTRODUCTION

The human brain can be modeled as a complex network
of interconnected regions that continuously exchange in-
formation [1]. Advances in neuroimaging techniques, par-
ticularly functional magnetic resonance imaging (fMRI),
have allowed researchers to investigate the properties of
these networks in terms of the functional relationships be-
tween different regions of the brain [2–5]. Functional con-
nectivity (FC), typically measured as a statistical depen-
dency between the activity of pairs of brain regions [6],
has become a foundational tool to characterize large-scale
brain organization [6]. Decades of research using FC and
related techniques have demonstrated that human brain
networks share common architectural principles. Across
individuals, networks consistently exhibit efficient infor-
mation processing pathways [7], heavy-tailed distribu-
tions of connection weights, node degrees with the pres-
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ence of hubs and rich-club organizations [8–10], modular
structures [11], and efficient wiring costs [12].

Although these common features are shared between
individuals, each brain network carries a unique signa-
ture [13], shaped by individual differences in cognitive
abilities, experiences, and plasticity. Indeed, subtle but
robust differences in brain network organization form the
basis for functional brain fingerprinting [14]. In their
seminal work [15], Finn and colleagues demonstrated
that individuals can be reliably identified based solely
on their whole-brain FC profiles. This work sparked
broad interest in uncovering subject-level patterns from
fMRI and has since expanded to other modalities, includ-
ing electroencephalography (EEG) [16–19], functional
near-infrared spectroscopy (fNIRS) [20], and magnetoen-
cephalography (MEG) [21, 22]. These studies underscore
the robustness and cross-modality generality of individ-
ual brain connectivity patterns across modalities and cog-
nitive states [23–25]. Moreover, the clinical relevance of
fingerprinting is gaining traction: alterations in an indi-
vidual’s connectivity profile over time can have important

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2025. ; https://doi.org/10.1101/2025.06.20.660792doi: bioRxiv preprint 

mailto:giovanni.petri@nulondon.ac.uk
https://doi.org/10.1101/2025.06.20.660792
http://creativecommons.org/licenses/by/4.0/


2

implications in clinical settings [26], and in early diagno-
sis of neurodegeneration [27–29].

While effective for this scope, FC has intrinsic limi-
tations: it captures only pairwise statistical associations
and typically assumes temporal stationarity. To address
these constraints, emerging approaches extend connectiv-
ity analyses across multiple dimensions [30]. Edge time
series, for instance, track the temporal evolution of con-
nectivity strength between pairs of regions, characteriz-
ing subject-specific patterns that vary across time [31–
33]. Other frameworks move beyond pairwise interac-
tions, focusing on higher-order interactions, which in-
volve three or more brain regions [34]. For instance,
information-theoretic approaches, such as multivariate
information theory and partial entropy decomposition,
quantify how information is shared, redundantly or syn-
ergistically, across multiple regions [35–37]. Parallel to
these methods, topological data analysis (TDA) provides
a lens for identifying higher-order structure in brain net-
works. Techniques such as persistent homology and sim-
plicial complexes track multiregional interactions that
persist across scales and time [38–42]. TDA has effec-
tively identified differences in structural connectivity [39],
functional connectivity [38, 43], brain representation [44],
cortical thickness [45, 46], EEG dynamics [47], and PET
images [48, 49].

A tool of particular interest from TDA for brain net-
work analysis is the homological scaffold [38]. This ap-
proach uses persistent homology to identify the topolog-
ically significant links in a weighted brain network [50].
A homological scaffold is constructed by performing a
weighted rank filtration, where edges are added one at
a time to an initially empty graph in order of decreas-
ing weight. At each step of the filtration, the graph
is promoted to its clique complex–a simplicial complex
formed by treating every complete subgraph (clique) as
a simplex. This allows the computation of topological
features, such as 1-dimensional homology classes (H1),
which correspond to loops or topological holes in the net-
work. The final scaffold includes all edges that partici-
pate in at least one of these cycles, effectively captur-
ing the network’s topological backbone. Unlike conven-
tional thresholding, this method preserves essential mul-
tiscale topological features and avoids arbitrary cutoffs,
enabling a more global view of mesoscale network orga-
nization [40], and is akin to a Rips-Vietoris filtration on
metric associated to Pearson correlations. Edge weights
in the scaffold can be defined either based on their per-
sistence, i.e., how long an edge remains present during
the filtration, or by their frequency, i.e., how many H1

loops they participate in. Importantly, prior work has
shown that homological scaffolds effectively distinguish
altered brain states — separating psilocybin-treated in-
dividuals from placebo [38], as well as highlight differ-
ent information integration schemes [51]. However, it
remains unknown whether such topological sensitivity to
subject-specific and state-specific patterns generalizes in
the context of robust individual fingerprinting.

Here, we show that homological scaffolds derived from
resting-state fMRI not only enhance individual speci-
ficity, but achieve near-perfect identification accuracy
across sessions using just a fraction of the connections of
classical FC. Beyond their fingerprinting power, scaffolds
reveal a novel link between brain network topology and
information integration [52]: redundant communication
concentrates along borders of topological cycles making
up the scaffolds, while interactions across the cycles are
significantly more synergistic than expected, presenting
lower correlations and thus giving origin to the topolog-
ical void. This interplay underpins uniquely individual
patterns of brain organization, positioning scaffolds as a
powerful and interpretable framework for brain finger-
printing and biomarker discovery.

RESULTS

To investigate individual differences in brain functional
organization, we analyzed resting-state fMRI data from
100 unrelated participants, each scanned in two sepa-
rate sessions as part of the Human Connectome Project
(HCP) [53]. FC matrices were constructed for each par-
ticipant and session by computing Pearson correlations
between the time series of 300 brain regions defined by
the Schaefer atlas [54] (Fig. 1A).

To test whether topological structure outperforms con-
ventional FC as a subject fingerprint, we apply persistent
homology using weighted rank filtration, adding edges
in decreasing order of their FC weight [50]. This pro-
cess tracks the birth and death of topological features,
specifically 1-dimensional loops (i.e. the generators of
the H1 homology group). We identify the core topolog-
ical structure by constructing “frequency scaffolds” [38],
which consist of all links participating in at least one
homological generator, weighted by the number of cy-
cles they belong to (Fig. 1B). This procedure typically
yields sparse networks, retaining on average ∼ 1% of the
original links (Fig. 1C and see Methods for a detailed de-
scription). For completeness and as comparative bench-
marks, we also compute thresholded FC matrices, retain-
ing the top 25% (following standard FC approaches [55])
and 1% strongest connections (to match scaffold’s densi-
ties). Finally, we measure the fingerprinting performance
of each representation. We do this by vectorizing the up-
per triangle of the adjacency matrix for each representa-
tion, and, for every participant, compute the Pearson’s
correlations between their Session 1 vector and all Ses-
sion 2 vectors (and vice versa). Following standard ap-
proaches [15, 56], a correct identification occurred when a
participant’s own data yielded the highest cross-session
correlation. We repeated this procedure in both direc-
tions — Session 1 to Session 2 and Session 2 to Session
1 — and defined overall accuracy as the average identifi-
cation rate across the two directions (Fig. 1D).
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FIG. 1. Schematic of scaffold computation and fingerprinting workflow. (A) Resting-state fMRI scans from the 100
unrelated subjects of the Human Connectome Project are used to compute individual functional connectivity matrices from
two sessions (∼10 days apart). (B) Conceptual illustration of homological scaffold construction. Edges are progressively added
in decreasing weight order, and those participating in topological cycles (H1 features) form the scaffold. (C) Comparison
between a functional connectivity matrix thresholded to retain 1% of the strongest connections (left) and the corresponding
scaffold (right), which achieves similar sparsity while preserving topologically informative links. (D) Visual representation of
the functional fingerprinting process: an individual’s test session brain connectivity matrix is compared against a database of
re-test session matrices to identify the correct match based on the highest similarity.

Homological scaffolds outperform functional
connectivity in identifying subjects

To compare the homological scaffold with FC, we com-
pared the similarity distributions — measured via Pear-
son correlation — between pairs of scans from the same
individual and those from different individuals (Fig. 2A).
The scaffold representation shows a markedly clearer sep-
aration between the within-subject and between-subject
similarity distributions, as quantified by a significantly
higher Cohen’s d effect size compared to FC (Fig. 2B).
To strengthen this observation, we also compute the iden-
tification success rate. We find that full FC and its spar-
sified versions (25% and 1% thresholds) plateau around

90%. Homological scaffolds instead achieve near-perfect
identification with a ∼ 100% success rate across the co-
hort (Fig.2A, Section I and Table S1).

Next, we investigate the robustness of these findings.
First, we assess the impact of common fMRI preprocess-
ing choices on scaffold performance (Sec. II and Table
S4). Overall, we find that fingerprinting capacity of scaf-
folds is weakly affected by different preprocessing steps.
Indeed, the only step to significantly impact performance
is low-pass filtering, the omission of which substantially
degraded accuracy (from 99% to 83.5% using Glasser at-
las data). Conversely, other common preprocessing steps,
like global signal regression (GSR), high-pass filtering,
and the choice of scan acquisition order (left-right vs.
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A) Intersessions similarities across subjects

B) Effect size similarities across subjects

C) Comparison of different Atlas D) Identification rate for differerent windows size

FIG. 2. Scaffolds outperform traditional functional connectivity in capturing individual-specific brain patterns.
(A) Intersession similarity heatmaps and corresponding identification success rates for full Functional Connectivity (FC) (Suc-
cess Rate = 90.5%), FC thresholded at 25% (Success Rate = 90.0%), FC thresholded at 1% (Success Rate = 87.5%), and
Scaffolds (Success Rate = 100.0%). (B) Violin plots display the distributions of intra-subject (within-subject) and inter-subject
(between-subject) Pearson correlations for the four representations shown in (A). Cohen’s d values (ES) quantify the separation
between these distributions: FC full (ES=3.17), FC th=25% (ES=3.37), FC th=1% (ES=3.78), and Scaffolds (ES=7.46). (C)
Boxplots compare intra-subject and inter-subject correlation distributions for FC and Scaffolds across different brain atlases:
AAL 89 (FC ES=1.37, Scaffolds ES=2.09), Schaefer 100 (FC ES=2.12, Scaffolds ES=2.72), Shen 268 (FC ES=2.99, Scaffolds
ES=4.75), and Glasser 360 (FC ES=4.58, Scaffolds ES=8.04), with their respective Cohen’s d effect sizes indicated. (D) Line
graph showing the identification success rate (%) for Functional Connectivity and Scaffolds as a function of different fMRI
window widths (from 100 to 1100 TRs). Standard deviation for scaffolds is also shown. This demonstrates that scaffold-based
representations maintain high discriminability even with limited data, outperforming FC across all window scan lengths.

right-left phase encoding) have minimal or slightly detri-
mental effects on scaffold identifiability, which remained

at or near 100% in most conditions.

Second, we evaluate fingerprinting performance for
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different brain atlases, including anatomical (AAL89
[57, 58]) and functional parcellations of varying reso-
lutions (Schaefer100/300 [54], Shen268 [59], Glasser360
[60]) (Fig. 2C, Sec. I A, Table S2). Across all atlases,
scaffolds consistently outperform the corresponding 1%
thresholded FC matrix (as well as the 25% thresholded
and full FC, see SI). Identifiability scores strongly de-
pended on atlas resolution, increasing from 43% (AAL89)
and 64.5% (Schaefer100) with scaffolds to 100% (Schae-
fer300) and 99.5% (Glasser360). As also shown in previ-
ous studies [61], this suggests that higher resolution par-
cellations better capture the individual-specific details.

Finally, we examine how scaffold performance changes
with shorter scan lengths. Specifically, we progressively
shorten fMRI data from 1200 TRs (∼ 14.4 minutes) to 50
TRs (∼0.6 minutes) and compute the identification suc-
cess rate at each step to quantify identification accuracy
( Fig. 2D, see also methods for details, and Fig. S2 for re-
sults on effect size) . Across all window lengths, scaffolds
again consistently outperform thresholded FC, maintain-
ing a high effect size comparable to that achieved using
the full FC timeseries, even for windows as short as 100
TRs. This indicates that scaffolds capture stable individ-
ual traits even at shorter time scales or limited scan time.
In Sec. III we also provide a comparison of fingerprint-
ing capacity within- and across-sessions, showing that
within the same session the fingerprinting capacity at
short timescales of FC and scaffolds is comparable, sup-
porting the idea that scaffolds captures preserved func-
tional traits, while FC better captures transient states.

Scaffold edges are distributed across the brain

Having established the superior accuracy and robust-
ness of scaffolds, we next turn to: what makes them
so effective? Specifically, we examine where individual-
specific information is concentrated within these net-
works. To do this, we calculated the differential power for
each edge in both the FC (1% thresholded) and scaffold
representations, following Finn et al. [15]. This metric
identifies edges that are highly stable within an individ-
ual across sessions but highly variable between individ-
uals. Following previous work [15], we selected the top
0.2% of edges with the highest differential power, consid-
ering these as the most critical for fingerprinting.

We then examined the distribution of these high-
importance edges across 7 canonical resting-state net-
works [62]. A striking difference emerged (Fig. 3A-B):
for FC, the vast majority (72%) of important edges were
within individual networks (intra-network connections).
In contrast, for the scaffold, the majority (56%) of im-
portant edges spanned between different networks (inter-
network connections). This suggests that while FC-based
identity is reflected in local functional network prop-
erties, scaffold-based identity relies on the integration
across networks, reflecting a mesoscale organization.

To directly test this hypothesis, we repeated the finger-

printing analysis using only intra-network edges or only
inter-network edges for FC and scaffolds (Fig. 3C, Sec-
tion I B, Table S3). For FC, intra-network edges alone
supported relatively high identification rates (e.g., 73%
using Default Mode Network edges), often comparable
to full-network performance. This reinforces the view
that FC-based identity signatures are localized within
specific brain systems. In contrast, scaffold-based identi-
fication suffered when restricted to intra-network edges,
with performance dropping to 10–50% across networks
(maximally 60% for the Somatomotor network). Strik-
ingly, using only the inter-network scaffold edges restored
performance to nearly full accuracy (∼98%), highlighting
again that the key individual-specific information in scaf-
folds lies in the links between networks. Scaffolds thus
appear to capture an inherently mesoscale, distributed
signature of brain organization.

Scaffold edges balance synergy and redundancy

Motivated by the mesoscale nature of scaffolds and
their definition through topological cycles, we inves-
tigated the information-theoretic properties of scaffold
edges. Specifically, we examined whether edges forming
“holes” — the defining structures of the scaffold – carry
distinct information-processing roles. Following prior
works [52], we adopted the integrated information de-
composition (phi-ID) framework [63] to compute subject-
specific synergy and redundancy matrices for every pair
of brain regions. As expected, we found strong correla-
tion between FC and redundancy, while synergy showed
no significant relationship with FC (Fig. 4A). This con-
firms that FC primarily captures redundant information
shared between regions.

Our topological analysis distinguishes between edges
forming the scaffold borders (those participating in
the H1 generators, typically characterized by high FC
weights by the construction of the filtration) and the in-
ternal edges spanning the topological voids, whose rela-
tively lower weights allow the cycles to form and persist.
Given the correlation between FC and redundancy and
the filtration construction, scaffold border edges exhibit
high redundancy. The critical question is how synergy
behaves with respect to topological cycles. We hypoth-
esize that internal edges, despite their lower correlation
(and redundancy), might support greater synergistic in-
teractions, acting as integrative “bridges” across topo-
logical holes (Fig. 4B).

To test this, we compare the synergy values of internal
edges versus border edges. Indeed, we find that internal
links displayed significantly higher synergy than border
links (Fig. 4C). To confirm this result is not a byprod-
uct of low correlation alone (i.e., an inverse relationship
between synergy and redundancy), we compared the syn-
ergy of internal edges against three null distributions: (i)
one obtained by sampling synergy values randomly from
all edges, (ii) a second one obtained by sampling syn-
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A) B) C)

FIG. 3. Scaffolds rely on inter-network connectivity to enhance individual identification. (A) Heatmaps illustrating
the differential power of edges for FC (top) and scaffolds (bottom). In FC, 72% of differential power is concentrated within
intra-network connections (diagonal: 0.66), while 28% spans across inter-networks (off-diagonal: 0.17). In contrast, scaffolds
distribute differential power more evenly, with 44% within-network (diagonal: 0.46) and 56% across networks (off-diagonal:
0.27), involving all 7 canonical resting-state networks. (B) Circular connectivity diagrams (connectograms) illustrating the
location of high differential power edges in FC (top) and Scaffolds (bottom). (C) Box plots comparing identification rates
(IdRate) for FCs and Scaffolds when considering only edges across different subnetworks “No subnet”) versus using only intra-
network edges from specific subnetworks (DA: Dorsal Attention, C: Control, DMN: Default Mode Network, L: Limbic, SA:
Salience/Ventral Attention, SM: Somatomotor, V: Visual) or the full matrix. This further confirms that FC heavily relies on
within-network connections, while scaffold identity relies on inter-network connections.

ergy values only from edges with FC/redundancy val-
ues matched to those of the internal links, and (iii) a
third one obtained by sampling synergy values from ran-
dom non-topological closed cycles (to assess whether the
effect emerges from pure geometrical effects [64]). In
all cases, the internal scaffold edges showed significantly
higher synergy than expected by chance (Fig. 4D).

Together, these findings uncover a novel link between
the topological organization of brain networks and their
information-processing profiles. Scaffold representations
delineate a functional architecture in which redundant
communication concentrates along the borders of topo-
logical cycles, while synergistic interactions preferentially
occupy the voids they enclose. This spatial segregation
of redundancy and synergy suggests that scaffolds encode
a balance between structured, stable pathways and flexi-
ble, integrative processing. Such a balance may underlie
the emergence of individual-specific scaffold signatures,
capturing distinctive aspects of brain organization that

remain hidden to conventional FC analyses.

DISCUSSION

Identifying individuals based on their unique patterns
of brain activity and connectivity—brain fingerprint-
ing—has emerged as a powerful paradigm for under-
standing individual differences in brain organization [14,
15]. While functional connectivity (FC) derived from
fMRI has proven remarkably effective for this purpose
[15, 65], it primarily captures pairwise linear correla-
tions, potentially overlooking richer, higher-order orga-
nizational principles. Here, we introduced an alternative
approach leveraging topological data analysis (TDA),
specifically homological scaffolds [38], to extract a unique
fingerprint based on the persistent topological structure
of the functional connectome. Our findings demonstrate
that these topological fingerprints not only achieve near-
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FIG. 4. Information-Theoretic Properties of Homological loops. (A) Diagram illustrating the relationships between
FC, redundancy, and synergy across brain regions. FC is strongly positively correlated with redundancy (ρ=0.86), but only
weakly with synergy (ρ=0.23). Redundancy and synergy also show a weak correlation (ρ=0.3). (B) Conceptual illustration
distinguishing “boundary links” — edges that form the borders of topological cycles (solid lines) — from internal links that
span the interior of the topological cycles (dashed red lines). (C) Boxplots comparing mean synergy (in bits) across different
categories of links: Border (true scaffold border links), Internal (true internal links spanning topological holes), Random
(randomly selected edges), Random (FC Match) (randomly selected edges matched to FC correlation values of internal links),
and Random Cycle Internal (internal edges from randomly selected cycles). Internal links show significantly higher synergy
than border links and random selections, suggesting a unique role in integrative information processing within topological
cycles.

perfect identification accuracy, but also exhibit supe-
rior robustness and reveal distinct organizational features
compared to traditional FC-based methods.

The superiority of topological over correlation-based
measures aligns with emerging evidence that brain orga-
nization is fundamentally shaped by wiring constraints
and communication efficiency principles [12, 66]. Topo-
logical cycles may represent optimal routing paths that
minimize metabolic costs while maximizing information
integration—constraints that could vary systematically
across individuals due to genetic and developmental fac-
tors [67].

The central result of our study is the striking superi-
ority of homological scaffolds over standard FC measures
for individual identification. Using test-retest resting-
state fMRI data from the Human Connectome Project,
scaffolds achieved 100% accuracy in identifying 100 unre-

lated individuals, significantly outperforming full FC and
thresholded FC matrices, which plateaued around 90%
(Table S1, Fig. 2A). This advantage was not incidental;
it proved remarkably robust across various standard pre-
processing choices (Table S4), multiple brain atlases of
differing resolutions and modalities (Table S2, Fig. 2C),
and perhaps most notably, across substantially shortened
time series lengths (Fig. 2D). The ability of scaffolds to
maintain high discriminability even with data segments
as short as 100 TRs (∼72 seconds) suggests they capture
highly stable, intrinsic topological traits of an individ-
ual’s functional brain architecture, potentially offering
advantages for clinical applications or studies with lim-
ited scan time. This is consistent with recent studies
on the temporality of brain fingerprinting, which demon-
strated that bursts of “identifiability”can occur even over
short time scales [68, 69] (and the additional results re-
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ported in Sec. III).

But, why are scaffolds such effective fingerprints? Our
results suggest that scaffolds capture fundamentally dif-
ferent aspects of brain organization compared to FC.
When examining the edges most critical for identifica-
tion (using differential power [15]), we found a clear dis-
tinction: high-DP FC edges were predominantly located
within canonical brain networks (72%), particularly the
default mode, control, and visual systems, consistent
with previous reports emphasizing the role of fronto-
parietal and default mode networks in FC-based iden-
tifiability [15, 70]. In stark contrast, high-DP scaffold
edges were predominantly found between different net-
works (56%) (Fig. 3a,b). This finding echoes recent work
on higher order interactions in brain networks that em-
phasizes integration across canonical functional systems
[71].

Furthermore, restricting the fingerprinting analysis
to only intra-network edges severely degraded scaffold
performance, whereas using only inter-network scaffold
edges largely recovered the full scaffold’s near-perfect ac-
curacy (Fig. 3c). This indicates that the individual iden-
tifying power of scaffolds resides in their ability to cap-
ture the mesoscale distributed organization of brain func-
tion – the specific pattern of topological loops and holes
formed by interactions across large-scale systems, rather
than the localized connectivity strength within those sys-
tems. This finding resonates with recent work suggesting
that individual differences in cognition are better pre-
dicted by between-network rather than within-network
connectivity [72, 73]. The inter-network edges captured
by scaffolds may reflect individual variations in network
integration capacity—a key feature of cognitive flexibility
and executive function [74, 75]. This mesoscale topologi-
cal signature appears to be a more unique and stable in-
dividual identifier than the strength of local connections
typically emphasized by FC.

Homological scaffolds emerge as a first link between
topology and multivariate information theoretic descrip-
tion. Confirming previous work [52], we found FC
strength strongly correlated with redundant information
between regional time series (Fig. 4A). The scaffold con-
struction selects for edges involved in forming topologi-
cal cycles (H1 generators). By definition of the weighted
rank filtration, edges forming the “borders” of these cy-
cles have high FC weights and, consequently, high re-
dundancy. The intriguing finding emerged when exam-
ining the internal edges that span the topological voids
enclosed by these borders – edges characterized by rela-
tively lower FC and redundancy. These internal edges ex-
hibited significantly higher synergistic information than
the border edges, and significantly higher than expected
by chance, even when controlling for FC/redundancy lev-
els (Fig. 4C). This suggests a novel link between network
topology and information dynamics: the 1-dimensional
“holes” revealed by persistent homology are not merely
absences of strong pairwise correlation but are structured
regions characterized by heightened synergistic interac-

tions among the connections spanning them.

This interplay between redundancy and synergy within
the scaffold structure offers a potential explanation for its
discriminative power. The border links demonstrate high
redundancy, with strong pairwise correlations indicating
shared informational content. In contrast, considering
pairs of links that span the internal loops reveals high
synergy between them, an interaction that emerges de-
spite the weak correlation characterizing the nodes. This
spatial segregation of information modes parallels recent
findings that synergistic interactions support conscious
awareness and cognitive flexibility [52, 71]. The topo-
logical cycles may thus delineate functional units where
redundant “backbone” connections provide stable infor-
mation channels, while synergistic “bridges” enable flex-
ible recombination of information—a balance that could
be highly individual-specific due to its role in supporting
each person’s unique cognitive style [76].

An important practical advantage of scaffolds is their
sparsity (≈1% of edges), making them computationally
efficient for large-scale studies. This efficiency, combined
with their robustness to short scan durations, positions
scaffolds as a practical tool for clinical implementation
where scan time is limited. While strategic study design
[77], broader sampling [78], and scan duration [79] are
often thought to improve predictive power, these results,
in conjunction with others [31], suggest additional routes
for identifying individual differences in MRI signal.

Importantly, when we repeated the analysis within
each session (Fig. S3-S4), the gap between scaffolds and
FC decreased notably: FC success rates and effect sizes
rose to scaffold-like levels, whereas scaffold performance
was unchanged. This convergence indicates that FC
fingerprints derive a substantial boost from transient,
state-dependent co-activation patterns that are natu-
rally aligned within the same scan. By contrast, the
scaffold signal—anchored in persistent topological cy-
cles—appears largely insensitive to such momentary fluc-
tuations, capturing instead trait-like organisational fea-
tures that generalise across days.

Our study naturally presents some limitations. First,
the scaffolds were derived from static, time-averaged FC
matrices. While the sliding window analysis showed ro-
bustness over shorter intervals, exploring scaffolds de-
rived directly from dynamic connectivity or using time-
resolved topological methods could reveal further insights
into transient brain states and their individual speci-
ficity. Second, the interpretation of information-theoretic
measures like synergy and redundancy in the context of
BOLD fMRI is still an active area of research [52, 80].
While our findings point to a compelling link between
topology and synergy, the precise functional meaning re-
quires further investigation. Third, our analysis focused
on H1 homology (loops); exploring higher-dimensional
topological features (H2, cavities) might uncover addi-
tional organizational principles [39].

Future research should investigate the functional rel-
evance of these topological fingerprints. For example,
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relevant questions are: How do individual variations in
scaffold structure relate to cognitive abilities, personality
traits, or behaviour? Can changes in scaffold topology
track learning, development, or ageing? Additionally,
combining scaffolds with task-based fMRI could reveal
how individual topological signatures reconfigure dur-
ing cognitive demands, potentially linking stable traits
to state-dependent flexibility [81, 82]. Furthermore, ap-
plying topological fingerprinting to clinical populations
could be particularly fruitful. Alterations in brain con-
nectivity are hallmarks of numerous neurological and
psychiatric disorders [83, 84]. Recent work has shown
altered topological properties in autism [85], schizophre-
nia [86], and Alzheimer’s disease [87]. Our scaffold ap-
proach might be particularly sensitive to these alterations
given its focus on mesoscale organization, which appears
disrupted across multiple psychiatric conditions [88]. In-
vestigating whether scaffold properties are differentially
affected in these conditions could provide novel biomark-
ers for diagnosis, prognosis, or treatment response, po-
tentially offering greater sensitivity than traditional FC
measures due to their robustness and mesoscale nature.

In conclusion, this work introduces homological scaf-
folds as a potent and robust method for brain fingerprint-
ing, significantly surpassing traditional functional con-
nectivity approaches. By capturing the persistent topo-
logical structure of brain interactions, particularly the
mesoscale arrangement of connections spanning across
large-scale networks, scaffolds provide a unique window
into individual brain organization. Our findings linking
the topological voids within scaffolds to heightened syn-
ergistic information suggest a deeper connection between
network topology and information processing principles.
This work highlights the power of moving beyond pair-
wise correlations [34] and joining tools from topology and
information theory [41, 42] to unravel the complex, indi-
vidualized architecture of the human brain.

II. METHODS

A. Dataset

We utilized data from 100 unrelated healthy young
adults (54 females, 46 males, mean age = 29.1 ±
3.7 years) provided in the Human Connectome Project
(HCP) 900-subject data release [53, 89]. The HCP con-
sortium curated this specific subset to ensure individuals
were not family relatives, which was crucial for our study
to avoid potential confounds related to family structure
in identifiability analyses. All participants provided writ-
ten informed consent according to the HCP protocol,
which was approved by the local Institutional Review
Board at Washington University in St. Louis. All ex-
periments were performed in accordance with relevant
guidelines and regulations.

We focused on the resting-state fMRI data (HCP file-
names: rfMRI REST1 and rfMRI REST2). These were

acquired in separate sessions on two different days. Each
session included scans with both left-to-right (LR) and
right-to-left (RL) phase-encoding directions to mitigate
susceptibility distortions. For all primary analyses, we
exclusively utilized the data from the LR phase-encoding
direction. To validate this approach, we conducted a ver-
ification analysis where we compared the functional con-
nectivity (FC) matrices from the LR scans alone against
the mean FC matrices obtained by averaging the results
from the LR and RL scans. The results were highly com-
parable, confirming that using only the LR data provided
a reliable measure of functional connectivity representa-
tive of the full dataset. Full details on the HCP resting-
state acquisition can be found in [90].

B. Preprocessing

The data were processed using the HCP minimal pre-
processing pipelines [91]. The preprocessing workflow
corrected for gradient distortion, head motion, and B0
field inhomogeneities. Functional data were registered
to the individual’s T1w structural image and then trans-
formed into MNI152 standard space. All transformations
were concatenated and applied in a single step to mini-
mize interpolation blurring, with the final data resampled
to 2mm isotropic voxels. To preserve fine-grained spa-
tial detail, no spatial smoothing was applied. Structured
noise was removed using ICA-FIX [92, 93], which identi-
fies and removes non-neural signal components. The re-
sulting cleaned time series from the MNInonlinear folder
served as the primary input for all subsequent analyses.

C. Parcellation

To define network nodes, we applied several standard
brain atlases to the preprocessed fMRI data in MNI
space. These included: the Automated Anatomical La-
beling atlas (AAL, 90 regions) [57], the Schaefer func-
tional parcellations (using resolutions of 100 and 300 re-
gions) [54], the Shen functional parcellation (268 regions)
[59], and the Glasser multimodal parcellation (360 corti-
cal regions, to which we added 19 subcortical areas from
the HCP release, for a total of 379 regions) [60, 91]. For
each participant and each parcellation, regional time se-
ries were extracted by averaging the BOLD signal across
all voxels within each defined brain region. For analyses
involving brain subnetworks, we utilized the 7 canonical
resting-state networks defined by Yeo et al. (2011) [62],
assigning each cortical parcel from the Schaefer300 atlas
to one of these networks.

D. Functional Connectivity (FC)

The conventional functional connectivity, denoted as
FCij , was determined by calculating the Pearson correla-
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tion coefficient between each pairs i and j of preprocessed
and denoised BOLD signal time series corresponding to
a different brain region.

Pearson correlation coefficient: The correlation
coefficient rij between two time series i = {i1, ..., iN}
and j = {j1, ..., jN} is defined as:

rij =

∑N
k=1 (ik − ī)(jk − j̄)√∑N

k=1 (ik − ī)2
∑N

k=1 (jk − j̄)2

where ī and j̄ are the means of the time series i and j,
respectively, and N is the number of time points. This
calculation results in a symmetric M ×M FC matrix for
each subject and session, where M is the number of brain
regions in the chosen parcellation.

E. Homological Scaffold

To analyze the topological structure of the weighted
networks, we used persistent homology [94]. Specifically,
we employed the methodology described in [50].

In this framework, a weighted network is converted into
a sequence of unweighted graphs, known as a filtration.
This is achieved by considering the edge weights as the
filtration parameter. We build a sequence of simplicial
complexes [30, 50], specifically clique complexes, by or-
dering the network links by their weights in descending
order. The filtration is constructed by creating a series
of thresholded graphs, where each step includes all edges
with a weight greater than or equal to a given threshold.
As the threshold is lowered, more edges are included, and
the corresponding clique complex grows.

Within this filtration, we track the birth and death of
one-dimensional topological holes, which are the genera-
tors of the first homology group (H1). A cycle is born at
a specific filtration value (i.e., edge weight) when a set of
edges forms a closed loop. A cycle is said to die when it
is filled in by 2-simplices (triangles), which occurs when
edges are added that connect the vertices of the cycle,
effectively turning the hole into a set of complete sub-
graphs (cliques). The birth (βg) and death (δg) of each
H1 generator, g, are recorded as indices in the filtration
sequence.

To summarize the topological information and under-
stand the importance of individual links in forming cycli-
cal structures, we constructed a frequency homological
scaffold, as introduced in Petri et al. (2014) [38]. The
frequency scaffold is a weighted graph where the edge set
is composed of all edges that are part of at least one H1

generator.
The weight of an edge e in the frequency scaffold, ωf

e ,
is defined as the total number of distinct H1 generators
to which that edge belongs. This is calculated using the
following formula [38]:

ωf
e =

∑
g

1e∈g

where 1e∈g is an indicator function that is equal to 1 if
edge e is a part of the generator g, and 0 otherwise.

All persistent homology calculations were performed
using the Ripserer.jl library [95] in the Julia program-
ming language.

F. Fingerprinting

To assess the ability of different network represen-
tations (full FC, thresholded FC, Scaffold) to identify
individuals, we implemented a fingerprinting procedure
based on cross-session similarity [15]. For each subject
and session, the upper triangle of the corresponding con-
nectivity matrix was vectorized.

Let vi,s1 be the vector for subject i in session 1 and
vj,s2 be the vector for subject j in session 2. We com-
puted a similarity matrix Sim, where Simij is the Pear-
son correlation coefficient between vi,s1 and vj,s2. To
identify subject i from session 1, we found the subject
j∗ in session 2 that yielded the maximum similarity:
j∗ = arg maxj(Simij). Subject i was considered cor-
rectly identified if j∗ = i. This process was repeated to
identify subjects from session 2 based on session 1 sim-
ilarity. The overall success rate was calculated as the
average percentage of correctly identified subjects across
both identification directions (Session 1 → Session 2 and
Session 2 → Session 1). We provide the disaggregated
values in Table S1.

G. Effect Size

To quantify the discriminability offered by different
representations, we calculated the effect size [96], sep-
arating the distributions of within-subject and between-
subject similarity scores. Within-subject similarity refers
to the correlation between vectors of the same subject
across the two sessions (i.e., the diagonal elements of
Sim, Simii). Between-subject similarity refers to the
correlations between vectors of different subjects across
sessions (i.e., the off-diagonal elements Simij where i ̸=
j). We used Cohen’s d as the measure of effect size [97],
defined as:

d =
µwithin − µbetween√

(nwithin−1)s2within+(nbetween−1)s2between

nwithin+nbetween−2

where µ and s2 are the mean and variance of the simi-
larity scores for the within-subject and between-subject
distributions, respectively, and n is the number of scores
in each distribution. The denominator represents the
pooled standard deviation.

H. Bootstrap Subsampling

To assess the stability and robustness of our findings
regarding the fingerprinting success rates for FC and scaf-
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folds, we employed a bootstrap subsampling procedure.
We randomly sampled 80 subjects without replacement.
We then calculated the fingerprinting success rate based
only on this subset of 80 subjects. This subsampling pro-
cess was repeated 1000 times, generating a distribution of
success rates, which allowed us to estimate the variability
of the metric due to subject selection.

I. Sliding Window Analysis

To investigate the temporal dynamics and stability of
fingerprinting features, analyses were conducted on var-
ious shorter portions of the original 1200 TRs resting-
state time series. We explored time series of the follow-
ing lengths: 1100, 1000, 900, 800, 700, 600, 500, 400,
300, 200, 100, and 50 TRs. For each selected time series
length, we employed a sliding window approach. Each
time series was partitioned into consecutive, potentially
overlapping segments of a fixed length, w. Each window
was treated as a separate realization from which an in-
dependent FC matrix was derived. For each length we
selected a window spanning from the first TRs t = 1 to
t = w. The window was then shifted forward by a step
size s. A variable sliding parameter s was used, with a
minimum value of 100 TRs. This meant that for longer
time series, there was an unavoidable overlap, resulting
in a maximum number of windows. For example, with a
time series length of 1100 TRs, only two windows of that
length could be selected: one from 0 to 1100 TRs, and a
second from 100 to 1200 TRs. When possible, we aimed
to select six windows of each length, minimizing the over-
lap between them or selecting the most spread-apart win-
dows to ensure broad coverage of the original time series.
This iterative process continued until the window encom-
passed the final portion of the time course, resulting in a
collection of connectivity matrices. To compare different
window lengths, we created numerous realizations. For
each realization, we randomly selected a single window
per subject and calculated relevant metrics, such as the
effect size and success rate, from the derived FC matrices.
We repeated this random selection and metric computa-
tion process 100 times to ensure the statistical robustness
of our findings.

J. Differential Power

To identify edges most critical for individual identifi-
cation, we calculated the differential power (DP) for each
edge, inspired by the approach of [15]. The differential
power metric quantifies the contribution of an edge to
fingerprinting by assessing its stability within an individ-
ual across sessions relative to its variability across the
group. Conceptually, edges with high differential power
exhibit connection strengths that are highly consistent
for the same person across time but differ substantially
between individuals. We used this metric to rank edges

and select the top fraction (in this case 0.2%) deemed
most important for identification for subsequent analy-
ses, such as computing their densities across canonical
brain networks.

K. Integrated Information Decomposition

To explore the information-theoretic properties under-
lying functional connections, particularly within the scaf-
fold structure, we utilized integrated information decom-
position based on the Partial Information Decomposition
(PID) framework. Specifically, we employed the ‘phi-
ID‘ (ΦID) formalism [63] to decompose the mutual in-
formation (MI) between the time series of pairs of brain
regions (X,Y ) into distinct information atoms: redun-
dancy (Ired), unique information (Iunq,X , Iunq,Y ), and
synergy (Isyn).

MI(X;Y ) =

Ired(X;Y ) + Iunq,X(X;Y ) + Iunq,Y (X;Y ) + Isyn(X;Y )

In particular we adopted the same approach used
in [52] to compute the pairwise value of synergy and re-
dundancy from fMRI time series data based on Time De-
layed Mutual Information TDMI. We computed the re-
dundancy (Ired) and synergy (Isyn) components for each
pair of regions resulting in subject-specific synergy and
redundancy matrices.

L. Synergy Distribution Analysis

We specifically investigated the synergy values asso-
ciated with the topological structures identified by the
scaffold. We compared the distribution of synergy val-
ues for edges belonging to the scaffold “borders” (i.e.,
edges that are part of the frequency scaffold matrix S
with Sij > 0) against the synergy values of “internal”
edges. Internal edges were conceptually defined as those
edges connecting pairs of nodes that lie within a topo-
logical “hole” (an H1 cycle) but are not part of the cycle
boundary itself. To verify that the observed higher syn-
ergy of the internal scaffold was not due to confounding
factors, we compared its distribution to that of randomly
selected edges defined in several ways.

1. Random: Synergy values were drawn from an equal
number of edges selected uniformly at random from
all possible edges in the connectome.

2. Random FC-Matched: Synergy values were drawn
from randomly selected edges, but constrained
such that their original FC weights (or redun-
dancy values) were comparable to those of the ac-
tual internal edges being analyzed. This controls
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for potential dependencies between synergy and
FC/redundancy.

3. Random Cycle Internal: Synergy values were
drawn after selecting a number of random cycles
matching the number and lengths of original cy-
cle. This was done to exclude the fact that the
higher synergy was given by the structure of the
cycle itself, rather than a specific properties of the
connectome.

Statistical tests (two-sided t-tests) was used to compare

the synergy distributions between border links, internal
links, and the random distributions.
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Supplementary Information: The Topological Architecture of Brain Identity

I. ROBUSTNESS OF IDENTIFIABILITY

To assess the identifiability of each subject across scanning sessions, we computed the Pearson correlation between
the vectorized upper triangles of the connectivity matrices (or scaffolds) from Session 1 and all subjects’ matrices
in Session 2, and vice versa. Identification was considered correct when a subject’s own scan yielded the highest
similarity across sessions. We computed success rates in both directions—Session 1 → Session 2 and Session 2 →
Session 1—and report the final identifiability as the average of the two. This bidirectional approach provides a robust
estimate of cross-session consistency in individual-specific brain signatures.

A. Robustness across atlases

Across all parcellations, homological scaffolds consistently outperform their density-matched (1%) thresholded FC
counterparts, yielding higher identification success rates and larger within- vs. between-subject effect sizes (Table S1,
Fig. S1, Table S2). For the Schaefer 300 atlas (Table S1), scaffolds achieve perfect identification in both sessions,
while full FC performance plateaus around 90%. These results confirm that scaffolds retain strong subject-specific
features even in extremely sparse representations.

Performance across different parcellation schemes (Table S2) further supports the robustness of scaffold-based
fingerprinting. While scaffolds consistently outperform 1% thresholded FC for all atlases, their absolute accuracy
varies with parcellation resolution. For coarse atlases like AAL-89 and Schaefer-100, scaffold performance is relatively
modest (43% and 64.5%, respectively), but this is likely due to the small number of regions limiting the number
and diversity of topological cycles. As the resolution increases (e.g., Shen 268, Schaefer 300, Glasser 360), scaffold
performance rapidly rises, reaching near-perfect identifiability (99.5–100%). This trend supports the idea that the
discriminative power of scaffolds emerges from capturing mesoscale topological features, which become increasingly
expressive at higher resolutions.

B. Localization of identifying edges

To explore where the most discriminative edges are located, we also computed identifiability success rates when
restricting the analysis to within-network edges only (Table S3). As expected from prior work, FC-based identifiability
is highest within canonical networks such as the Default Mode (73%) and Somatomotor (62%) systems. In contrast,
scaffold-based performance drops substantially when limited to intra-network connections (e.g., 33% in DMN, 50% in
SMN), confirming that their fingerprinting power does not rely on localized connectivity. Rather, as discussed in the
main text, scaffold identity signatures are distributed across inter-network edges and capture subject-specific integra-
tion patterns across the entire brain. This supports a fundamentally different mechanism for individual differentiation,
one that emphasizes topological integration over local coherence.

FC full FC 25% FC 1% Scaffolds
Session 1 89% 90% 87% 100%
Session 2 92% 90% 88% 100%

TABLE S1. Identifiability (success rates) for the Schaefer 300 atlas with full time series.

FC 1% Scaffolds
AAL89 40.5% 43%

Schaefer100 44% 64.5%
Shen268 85% 94.5%

Schaefer300 87.5% 100%
Glasser360 92.5% 99.5%

TABLE S2. Identifiability (success rates) for the various atlases of 1% thresholded FC vs. scaffolds.
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Effect Size = 1.55
Success Rate = 63.0

FC full

Effect Size = 1.88
Success Rate = 62.0

FC, th=25%

Effect Size = 1.38
Success Rate = 42.0

FC, th=1%

Effect Size = 2.09
Success Rate = 43.0

Scaffolds
Identifiability based on Atlas AAL 89

Effect Size = 3.64
Success Rate = 94.0

FC full

Effect Size = 3.99
Success Rate = 95.5

FC, th=25%

Effect Size = 4.57
Success Rate = 92.5

FC, th=1%

Effect Size = 8.04
Success Rate = 99.5

Scaffolds
Identifiability based on Atlas Glasser 360 bp

Effect Size = 2.51
Success Rate = 72.0

FC full

Effect Size = 2.49
Success Rate = 70.0

FC, th=25%

Effect Size = 1.37
Success Rate = 44.0

FC, th=1%

Effect Size = 2.72
Success Rate = 64.5

Scaffolds
Identifiability based on Atlas Schaefer 100

Effect Size = 2.99
Success Rate = 84.0

FC full

Effect Size = 2.96
Success Rate = 85.5

FC, th=25%

Effect Size = 2.99
Success Rate = 84.5

FC, th=1%

Effect Size = 4.75
Success Rate = 94.5

Scaffolds
Identifiability based on Atlas Shen 268

FIG. S1. Similarity matrices for different atlases and different FC thresholds versus scaffolds. From top to bottom,
atlas and number of regions: AAL (89), Glasser (360), Schaefer (100), Shen (268).
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FC Scaffolds
Frontoparietal 40% 21%

Default 73% 33%
DorsalAtt 25% 10%
Limbic 24% 10%

VentralAtt 31% 19%
Somatomotor 62% 50%

Visual 50% 33%

TABLE S3. Success rate performance when considering within-network connections only.
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FIG. S2. Effect sizes of intra- vs inter-subject similarities. We show here results for FC (1%) and scaffolds as a function
of window width, complementary to Fig. 2D.
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II. EFFECTS OF PREPROCESSING

Table S4 reports the impact of several standard preprocessing steps on fingerprinting accuracy across different
network representations. Homological scaffolds consistently outperform all functional connectivity (FC) benchmarks,
including full, 25%, and 1% thresholded matrices. In most conditions, scaffolds achieve near-perfect identification
(99–100%), demonstrating remarkable robustness to changes in preprocessing. Notably, scaffold performance remains
high whether only LR phase encoding is used or LR/RL runs are averaged, and is largely unaffected by the inclusion
or omission of global signal regression (GSR) or high-pass filtering. The only substantial performance drop is observed
when low-pass filtering is omitted: in this setting, scaffold accuracy decreases to 83.5%, though it still exceeds all
FC-based methods under the same condition. This suggests that low-pass filtering helps suppress high-frequency noise
that may interfere with the topological cycle formation central to scaffold construction. By contrast, FC performance is
more variable and systematically lower across all preprocessing variants. These findings highlight the superior stability
of scaffold-based fingerprinting under typical sources of preprocessing variability, making it especially promising for
robust subject identification across heterogeneous fMRI pipelines.

FC full FC 25% FC 1% Scaffolds
LR (Schaefer) 90.5% 90% 87.5% 100%
Mean LR/RL 82% 82% 81.5% 99.5%
GSR (Glasser) 94% 95.5% 92.5% 99.5%

no GSR 84.5% 82.5% 81% 99%
low pass filter (Glasser) 84.5% 82.5% 81% 99%

no low-pass 58.5% 58.5% 42.5% 83.5%
no high-pass (Schaefer) 89.5% 89.5% 88.5% 100%

high-pass 90.5% 93.5% 87% 93.5%

TABLE S4. Effects of Preprocessing effects on identifiability (success rates).

III. TRAIT VS. STATE SENSITIVITY IN SCAFFOLD AND FC REPRESENTATIONS

In addition to cross-session identifiability, we examined fingerprinting performance within a single scanning session
(i.e., intrasession comparisons). Results are reported in Figures S3. In this setting, both functional connectivity (FC)
and scaffold-based representations show improved success rates and larger effect sizes relative to intersession analyses,
as expected due to reduced temporal variability. However, we observe that –for short timescales– the gap between FC
and scaffold performance narrows substantially: the effect sizes and success rates for FC increase and become more
comparable to those of scaffolds (Fig. S4).

This convergence suggests an important interpretive distinction between the two representations. The scaffold, by
design, captures the persistent topological structure of functional interactions—features that are stable over time and
thus likely reflect individual traits in brain organization. FC, in contrast, appears more sensitive to transient fluctua-
tions in co-activation patterns that may reflect cognitive or physiological states present during scanning. As a result,
while scaffolds maintain high identifiability across sessions (trait-like stability), FC gains relative discriminability when
constrained to a single session where state-related variability is minimized.

This interpretation aligns with the emerging view that functional fingerprinting reflects a mixture of stable, trait-like
architecture and more dynamic, state-driven reconfigurations. Scaffolds may therefore provide a complementary lens
on brain individuality, emphasizing temporally invariant mesoscale integration patterns less influenced by momentary
fluctuations in cognitive or physiological state.
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FIG. S3. Intrasession fingerprinting performance. Comparison of identifiability success rates for FC and scaffold repre-
sentations when computed within-session (left) and across-sessions (right).
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FIG. S4. Ratio of scaffold vs FC effect sizes, intra- and inter-session as a function of the window length. We see
that for short time scales within the same sessions the ratio between effect sizes for scaffolds and FC is quite small, signaling a
comparable capacity of FC and scaffolds to fingerprint.
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