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Abstract 40 
Even in the absence of external stimuli, neural activity is both highly dynamic and organized 41 
across multiple spatiotemporal scales. The continuous evolution of brain activity patterns during 42 
rest is believed to help maintain a rich repertoire of possible functional configurations that relate 43 
to typical and atypical cognitive phenomena. Whether these transitions or “explorations” follow 44 
some underlying arrangement or instead lack a predictable ordered plan remains to be 45 
determined. Here, using a precision dynamics approach, we aimed at revealing the rules that 46 
govern transitions in brain activity at rest at the single participant level. We hypothesized that by 47 
revealing and characterizing the overall landscape of whole brain configurations (or states) we 48 
could interpret the rules (if any) that govern transitions in brain activity at rest. To generate the 49 
landscape of whole-brain configurations we used Topological Data Analysis based Mapper 50 
approach. Across all participants, we consistently observed a rich topographic landscape in 51 
which the transition of activity from one state to the next involved a central hub-like “transition 52 
state.” The hub topography was characterized as a shared attractor-like basin where all canonical 53 
resting-state networks were represented equally. The surrounding periphery of the landscape had 54 
distinct network configurations. The intermediate transition state and traversal through it via a 55 
topographic gradient seemed to provide the underlying structure for the continuous evolution of 56 
brain activity patterns at rest. In addition, differences in the landscape architecture were more 57 
consistent within than between subjects, providing evidence of idiosyncratic dynamics and 58 
potential utility in precision medicine.  59 
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1. Introduction  60 
Spontaneous brain activity in the absence of sensory input is considered to be highly structured 61 
in both space and time1 with amplitudes at least as large as stimulus-driven activity2,3. The 62 
ongoing patterns of cortical activity are thought to continually evolve over time and have been 63 
shown to encode multidimensional behavioral activity4. It is believed that the continuous 64 
evolution of cortical activity patterns could reflect multiple functions, namely, recapitulating (or 65 
expecting) sensory experiences5–8, maintaining a rich repertoire of possible functional 66 
configurations9,10, continuing top-down prediction/expectation signal for updating representation 67 
of the world1, reflecting changes in the behavioral and cognitive states11, and has been shown to 68 
be largely bistable12–14. However, it is not fully established whether transitions in intrinsic brain 69 
activity follow some underlying arrangement or instead lack a predictable ordered plan. 70 
Characterizing the rules underlying transitions in cortical activity has the potential to advance 71 
our understanding of the neural basis of cognition, and also to better anchor psychiatric disorders 72 
onto more robust biological features15,16.  73 
 74 
Since its inception, functional magnetic resonance imaging (fMRI) has been used to non-75 
invasively measure blood oxygen level-dependent (BOLD) signal as a proxy for neural 76 
activity17. Several fMRI studies have significantly advanced our understanding of brain 77 
functioning in healthy and patient populations by successfully identifying static or long-time-78 
averaged measures of intrinsic functional organization18–23. To measure brain’s intrinsic 79 
functional architecture, i.e., in the absence of any task (resting-state), co-fluctuations in the 80 
BOLD signal are assessed (a.k.a., resting-state functional connectivity). Although the dynamical 81 
aspect of brain activity has long been known to be critical in electrophysiology, low 82 
spatiotemporal resolution of the human neuroimaging has slowed down embracing dynamical 83 
analysis of the brain24. However, time-varying analysis of fMRI data is gathering momentum due 84 
to recent advances in data acquisition methods, such as multi-band25,26 and multi-echo27 imaging 85 
that enhance spatiotemporal resolution of the acquired data and facilitate development of novel 86 
data analytics28–36.  87 
 88 
Time varying analyses of intrinsic human neuroimaging data have revealed richer dynamics than 89 
previously appreciated, including existence of: fast switching between metastable states37; 90 
intermittent periods of globally coordinated co-fluctuations across spatially distributed brain 91 
regions30; large-scale metastable cortical waves24,38; and hierarchical temporal organization at the 92 
group level34. Further, individual differences in time varying signals at rest have been associated 93 
with a wide range of cognitive and behavioral traits and even shown to be more sensitive than 94 
static (or averaged) functional connectivity29. Typically, a time varying analysis first 95 
characterizes a set of brain states at the group level, followed by examining individual 96 
differences in frequency or duration of such states. A brain state is typically defined as a 97 
transient pattern of whole brain activation (or functional connectivity) and is usually 98 
characterized by activation of (or connectivity in) known large-scale brain networks (a.k.a. 99 
resting state networks). Importantly, typical time-varying analyses (e.g., using sliding window-100 
based approaches) have been prone to be affected by sampling variability and physiological 101 
artifacts in the fMRI data39,40. With that said, however, work using simultaneous wide-field 102 
optical imaging and whole-brain fMRI has established a direct link between resting-state 103 
hemodynamics in the awake and anesthetized brain and the underlying patterns of excitatory 104 
neural activity41–43. Thus, while the ongoing hemodynamics as measured by noninvasive fMRI 105 
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are coupled to excitatory neural activity, novel methods are required to carefully parse neuronal 106 
dynamics while discounting artifactual transitions, with a goal towards deciphering the ‘rules’ 107 
that determine whole-brain transitions across brain states. For example, it is unclear whether the 108 
temporal transitions in brain activity (or connectivity) are best conceptualized as a continuous (or 109 
gradual) evolution44–46 or discrete (or binary) switches47–49. Further, it is also unclear whether 110 
transition from one so-called brain state to another is direct or does the brain pass through a set 111 
of intermediary states. Lastly, while previous work defined brain states at the group level, it is 112 
unclear whether individual differences exist in terms of the configuration of brain states 113 
themselves.  114 
 115 
The low spatiotemporal resolution and high complexity of the fMRI data make the study of 116 
whole-brain dynamics at the single person level (n=1) a challenging endeavor. Specifically, low 117 
signal-to-noise ratio of the BOLD signal50 and the typically short duration of resting state fMRI 118 
scans (~5-15 min51) impedes precise characterization at the individual subject level. Further, high 119 
cost of MR data acquisition and excessive participant burden limit the amount of data that can be 120 
gathered. Fortunately, in the past few years, there is a growing momentum towards collecting 121 
and sharing fMRI data using a precision functional mapping approach, where each participant is 122 
sampled at multiple occasions (>=10) yielding hours’ worth of data for each individual52–55. Due 123 
to the vast heterogeneity in network topology from person to person, these approaches are 124 
critical to unveiling basic principles of brain function and organization. We argue that a similar 125 
approach for precision dynamics will be vital for deciphering the rules regarding how the human 126 
brain dynamically adapts from one configuration to the next and how these transitions relate to 127 
cognition and various psychopathologies56–59. 128 
 129 
In the current work, using a precision dynamics approach and the Midnight Scan Club (MSC) 130 
dataset53, we aimed at revealing the overall landscape of at-rest whole-brain configurations (or 131 
states) at the single individual level. We hypothesized that by revealing and characterizing the 132 
overall landscape we could interpret the rules that govern transitions in brain activity at rest. The 133 
MSC dataset includes individually defined parcellations and ~5 hours of resting state fMRI data 134 
for each participant – both of which allowed us to examine the topology and dynamics of at-rest 135 
whole-brain configurations in an unprecedented detail. We also addressed previous 136 
methodological limitations by using tools from the field of topological data analysis (TDA), 137 
which are designed to learn the underlying topology (or shape) of high dimensional datasets that 138 
are relatively sparse and noisy60,61. Specifically, here, we used the TDA-based Mapper approach 139 
that generates the shape of the underlying dataset as a graph (a.k.a., shape graph)32,62,63. Mapper 140 
has been previously shown to capture task-evoked transitions in the whole-brain activity patterns 141 
at the highest spatiotemporal resolution31. Unlike previous time varying analytics, Mapper does 142 
not require splitting or averaging data across space or time (e.g., windows) at the outset. Further, 143 
Mapper does not require any a priori knowledge about number of whole-brain configurations and 144 
does not impose strict assumptions about mutual exclusivity of brain states37. Lastly, the 145 
presented results were not only validated in the MSC dataset using split half analysis, but were 146 
also independently validated using a separate dataset from the Human Connectome Project25 147 
(n=100, unrelated individuals).  148 
 149 
 150 
 151 
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 152 
2. Results  153 
2.1 Estimating reliable landscape of whole-brain configurations at the single participant level 154 
Our first aim was to utilize the TDA-based Mapper approach to reliably estimate individually 155 
specific landscape (or manifold) of whole-brain configurations. To ensure the replicability of our 156 
findings, we first split the MSC data for each participant into two halves (discovery and 157 
replication sets) – each with ~2.5 hours of data per participant. Thus, for each participant, out of 158 
a total of ten sessions (each 30 mins long), we assigned odd sessions to the discovery and even 159 
sessions to the replication set.  160 
 161 
After rigorous preprocessing (see Methods and Gordon et al.53 for details), the individually 162 
specific parcellated data were fed into the TDA-based Mapper pipeline31, which consists of four 163 
main steps. First, the high-dimensional neuroimaging data are embedded into a lower dimension 164 
!, using a non-linear filter function ". Importantly, information loss incurred during 165 
dimensionality reduction is putatively recovered during the partial clustering step64,65 (third step 166 
in the Mapper pipeline). To better capture the intrinsic geometry of the data, a nonlinear filter 167 
function based on neighborhood embedding was used31 (see Methods for benefits of this non-168 
linear approach). Second, overlapping !-dimensional binning is performed to allow for 169 
compression and to reduce any destructive effects of noise. Third, partial clustering within each 170 
bin is performed, where the original high dimensional information is used for coalescing (or 171 
separating) data points into nodes in the low-dimensional space and hence allows for partially 172 
recovering information loss incurred due to dimensionality reduction. Lastly, to generate a 173 
graphical representation of the data landscape, nodes from different bins are connected if any 174 
data points are shared between them. Fig. S1 provides step-by-step representation of the Mapper 175 
pipeline.  176 
 177 
In contrast to traditional graphical representations of neuroimaging data, nodes in the Mapper-178 
generated shape graph represent clusters of highly similar whole-brain volumes (or time frames 179 
(TRs)), and edges connect any two nodes that share one or more whole-brain volumes. This 180 
approach naturally embeds temporal patterns within the spatial structure of the graph, which in 181 
turn confers several benefits for interrogating the spatiotemporal characteristics of the resting 182 
brain. For instance, using this shape graph, we can track how the resting brain dynamically 183 
evolves across different functional configurations at the individual-subject level. Importantly, our 184 
approach does not require any time-window averaging, which could potentially blur the data and 185 
has been shown to lead to artifactual findings due to head movement artifacts and sampling 186 
variability39,40.  187 
 188 
To reveal the rules that govern transitions between whole-brain configurations at-rest, we 189 
examined: (a) the topological properties of the shape graph, such as the degree distribution and 190 
existence of hubs; (b) the relationship between the Mapper embedding and canonical resting 191 
state networks; and (c) the transitions between whole-brain configurations. See Fig. 1 for our 192 
analytical approach. In addition to individual variability in the characteristics of Mapper-193 
generated landscapes, we also report the central tendency (or group average) of the dynamical 194 
landscape at rest. To account for linear properties of the data (e.g., serial auto-correlation) and 195 
sampling variability issues, we compared results with two null models, namely, the phase 196 
randomized null66 and the multivariate autoregressive null model40. Lastly, the results revealed 197 
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from the MSC dataset were independently validated using a separate dataset from the Human 198 
Connectome Project25 (HCP; n=100 unrelated individuals). 199 
 200 

 201 
Fig. 1: Estimation and characterization of the dynamical structure underlying transitions in intrinsic 202 
brain activity using our TDA-based Mapper approach. Here, we present data from a representative 203 
participant (MSC-01; odd sessions). [A] Individualized parcellated data from the highly sampled Midnight 204 
Scan Club (MSC) individuals53 was split into two halves: odd sessions (2.5 hours) and even session (2.5 205 
hours) sets. The Mapper approach was independently run on each set to generate the underlying 206 
structure as a graph. Each graph consists of nodes and edges, where the nodes could in turn contain 207 
multiple whole-brain volumes (or TRs; size of a node represents the number of TRs). The nodes are 208 
connected if they share TRs. [B] The Mapper-generated graph can be characterized in several ways. Here, 209 
we examine topological properties by annotating the graph nodes using nodal degree. [C] The graph can 210 
also be annotated with meta-information to characterize the mesoscale structure. Here, we show 211 
annotation using the activation of individual-specific resting state networks (RSNs). A pie-chart based 212 
annotation is used to reveal the proportion of time frames with each node belonging to different RSNs. [D] 213 
Similarly the graph can also be annotated using other available meta-information, e.g., session 214 
information. 215 
 216 
2.2 Topological properties of the landscape reveal existence of hub nodes   217 
We first characterized the Mapper-generated graphs by calculating nodal degree, which measures 218 
the strength (or number) of connections (or edges) per node. In the context of the shape graph, 219 
high degree nodes represent whole-brain activation patterns that are shared by many other nodes 220 
(i.e., are visited often in the temporal evolution of the data). The degree distribution for each 221 
participant and their corresponding splits (odd and even sessions) were further characterized to 222 
determine whether they deviated from what might be expected for linear properties of the data 223 
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(e.g., autocorrelation in the BOLD signal). We accomplished this goal by comparing the degree 224 
distribution from the real data with multiple instances of the two pre-defined null models (phase 225 
randomization and multivariate AR model). As evident from the degree distribution plots (Fig. 226 
2A), the real data contained heavy (or fat) tail distributions as compared to both null models. The 227 
heavy tail distribution is iconic for most real-world networks and indicates existence of highly 228 
connected nodes67–70. This finding was independently replicated in both halves of the MSC data. 229 
Statistical difference in the proportion of high-degree nodes (>20) in the real versus null data was 230 
assessed using one-way ANOVAs for both odd (F(2,27)=5.27, p=0.012) and even sessions 231 
(F(2,27)=7.15, p=0.003). 232 
 233 
Highly connected nodes that are also topologically central (i.e., influential) in the graph are 234 
known as hub nodes. Hub nodes are hypothesized to act as focal points for the convergence and 235 
divergence of information in the network70. Existence of hub nodes in the Mapper-generated 236 
graph would indicate the presence of nodes (or whole-brain configurations) that are visited often, 237 
potentially as intermediate (or transition) state. To examine the existence of hub nodes in the 238 
Mapper-generated landscapes, we estimated the closeness centrality of highly connected 239 
nodes71,72. This measure associates the nodes with shortest average path lengths as being the 240 
most influential (or central) for the graph. Nodes with high closeness centrality can receive 241 
information from other parts of the network in a short time (and vice versa). Across both halves 242 
of the data and all participants, topologically central highly connected hub nodes occurred in the 243 
shape graph (Fig. 2B highlights the hub nodes in a representative participant and supplementary 244 
figure Fig. S2 shows hub nodes across all MSC participants).  245 
 246 
 247 
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 248 
Fig. 2: Characterizing the Mapper-generated graph using degree distribution. [A] Degree distributions 249 
averaged across the ten participants, separately for odd and even sessions. For examining linear vs. 250 
nonlinear aspects, two null models were used, namely, the phase randomized null and the multivariate 251 
autoregressive null model. As evident from the degree distribution plots, real data were significantly fat 252 
tailed (>20) compared to both nulls. This finding was independently replicated in both halves of the data. 253 
The shaded area represents standard error around the mean (S.E.M.). [B] Mapper-generated graphs for a 254 
representative participant (MSC-01), highlighting hub nodes (i.e., nodes with high degree (>20) and high 255 
centrality (top 1%)). Similar plots were observed across all MSC dataset participants (see Fig. S2).  256 
 257 
Although substantial data censoring was performed to reduce the impact of head movement 258 
related artifacts, several additional analyses were performed to examine whether the observation 259 
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of high degree (and hub) nodes was associated with such artifacts. First, we examined whether 260 
the presence of high degree nodes was associated with head movement or global signal 261 
variations. No difference in framewise displacement (FD) or global signal was observed between 262 
brain volumes represented by high and low degree nodes of the shape graph (ps>0.15 for FD and 263 
ps>0.75 for global signal), for either split of the data. Second, we examined whether the 264 
percentage of frames censored due to head movement was related with percentage of high degree 265 
nodes. No significant relation was observed of either splits of the data (ps>0.20). Third, we 266 
applied frame censoring to the data generated from null models to examine whether the presence 267 
of high degree nodes was merely due to temporal masking. As shown in supplementary Fig. S5, 268 
high degree nodes were not present in the null data even after frame censoring.  269 
 270 
Further, parameter perturbation analysis was performed to make sure topological properties of 271 
the graph were stable across a moderate range of Mapper parameters and the high degree nodes 272 
in the real data were not an artifact of Mapper parameters (see Methods). Similar work was 273 
previously done to show Mapper-generated graphs were stable across different parameter 274 
combinations31. As shown in supplementary Fig. S6, for a large portion of Mapper parameter 275 
values, the proportion of high-degree nodes in the real data were significantly higher than null 276 
data. 277 
 278 
Overall, the presence of hub nodes in the dynamical landscape (across all participants) provides 279 
evidence for whole-brain configurations that i) are often visited during rest; ii) are highly 280 
conserved at the individual subject level; and iii) may act as a ‘switch’ between different 281 
configurations to putatively organize the spontaneous activity during rest.  282 
 283 
2.3 Hub nodes represent uniform (mean) activation across all RSNs, whereas peripheral 284 
nodes represent increased activation in one (or more) RSNs  285 
To relate Mapper-generated graphs to canonical neuroanatomical depictions of the resting brain, 286 
we annotated nodes in the Mapper graph using the relative engagement of a set of canonical 287 
large-scale resting state networks (RSNs). Importantly, we leveraged a set of individually-288 
defined network assignments that were pre-defined for individuals in the MSC dataset53. Fig. 289 
3A-B shows a Mapper-generated graph for a representative participant (MSC-01, odd sessions), 290 
where each node is annotated by activation in the RSN. In this view, each node is annotated 291 
using a pie-chart notation to show the proportion of brain volumes (or TRs) that have any RSN 292 
activated (above certain threshold). The mean signal for each RSN was z-scored and a threshold 293 
of 0.5 S.D. above the mean was used to denote activation of an RSN (other thresholds produced 294 
similar results). 295 
 296 
As shown in Fig. 3C, the topography of the Mapper-generated landscape provides important 297 
insights into the temporal architecture of the resting brain. Topologically highly connected and 298 
central hub nodes contained brain volumes in which no characteristic RSN was activated above 299 
the mean, whereas nodes with brain volumes dominated by one (or more) RSN(s) tend to occupy 300 
the peripheral corners of the landscape. The maps for all individual subjects demonstrated this 301 
same basic pattern, although there was evidence to suggest that different combinations of RSNs 302 
were dominant in different individuals. For instance, the default mode, ventral attention, and 303 
auditory networks clearly dominated the periphery of MSC-01 landscape, across both splits of 304 
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the data, but other participants had a different combination of networks dominating their 305 
landscapes (Fig. S3).  306 
 307 
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Fig. 3: Annotating Mapper-generated graphs based on individual-specific large-scale resting state 310 
networks (RSNs). [A-B] Mapper-generated graph for a representative participant (MSC-01; [A] odd and [B] 311 
even sessions) are shown. Here, each node is annotated by activation in the known large-scale resting 312 
state networks. Each node is annotated using a pie-chart to show the proportion of RSNs activated within 313 
each node. As evident, for MSC-01, for both odd and even sessions, the Mapper-generated graph has 314 
mainly three networks dominating on the periphery of the dynamical landscape: default mode, ventral 315 
attention, and auditory network. [C] Zoomed-in view of the Mapper graph generated using MSC-01 odd 316 
sessions. The nodes with dominating RSNs are located more towards the periphery of the landscape, 317 
while the hub nodes of the landscape are not dominated by any RSN and rather have uniform mean-level 318 
distribution across all RSNs. Four zoomed-in circles highlight four exemplary nodes, where the peripheral 319 
nodes have one (or more) RSNs in majority and the central node has no network dominating. Box plots 320 
represent activation (z-scored) in the corresponding RSNs across all time frames (TRs) within each 321 
highlighted node. We also present representative whole-brain activation maps for each of the three 322 
peripheral nodes, thresholded using mixture modeling73. The inset on the bottom shows individual-323 
specific parcellation for the participant MSC-01.  324 
 325 
 326 
2.4 RSN-based topography of landscapes is highly subject specific and stable across sessions 327 
To quantify the subject-specificity and examine whether Mapper-generated landscapes were 328 
stable within participants, we computed similarity between RSNs in terms of their co-329 
localization on the Mapper-generated graphs. If two networks are co-localized on the graph, then 330 
they activate (or deactivate) synchronously. Fig. 4A-B presents network similarity matrices for 331 
three representative participants across their odd and even sessions. As evident, qualitatively, the 332 
network similarity matrices are comparable across odd and even sessions. To quantify subject 333 
specificity in terms of network similarity, we compared network similarity matrices across 334 
sessions and participants using Pearson’s correlation. As evident in Fig. 4C, high within-335 
participant correspondence (i.e., high similarity between odd and even sessions) for network 336 
similarity matrices was observed as compared to between participant correspondence, suggesting 337 
dynamical landscapes are subject-specific and stable (over sessions).  338 
 339 
Lastly, we computed the central tendency of the dynamical landscape topography by averaging 340 
the network similarity plots across participants. As evident in Fig. 4D, the group averaged 341 
topography presents a different picture than the individual topographies. Across both halves of 342 
the data, group-averaged topography represents more synchrony between higher order cognitive 343 
networks (e.g., default mode, fronto-parietal, etc.) than unimodal sensorimotor networks (e.g., 344 
visual, auditory, etc.). However, this discrimination between network types is evident due to 345 
group averaging and is not necessarily present at the individual participant level. At the 346 
participant level, subject-specific combinations of higher order cognitive networks and unimodal 347 
sensorimotor networks are observed to be in synchrony. In summary, individual subjects 348 
demonstrated idiosyncratic, yet highly replicable, topological signature at the level of canonical 349 
resting state networks. 350 
 351 
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 352 
Fig. 4: Dynamical landscapes and their organization are subject specific. [A-B] Mapper-generated graphs 353 
annotated by RSN activation for two representative participants (MSC01-02) are shown. Both split halves 354 
(odd and even sessions) are shown for each participant. For each half, the figure also shows a similarity 355 
(correlation) matrix between RSNs, where high correlation between two RSNs suggest co-location on the 356 
Mapper-generated graph. As evident through Mapper-graph annotations and between network 357 
correlations there was high degree of similarity between two halves of the same participant. [C] To 358 
quantify between- vs within-participant correspondence across network similarity matrices, network 359 
similarity matrices were compared across split halves from all participants. As shown in the between 360 
subject matrix, high correspondence was observed for within-participant matrices, suggesting dynamical 361 
landscapes demonstrated idiosyncratic, yet highly replicable, topological signature at the level of 362 
canonical resting state networks. [D] Central tendency of the dynamical landscape, averaged over ten 363 
highly sampled individuals, for odd and even sessions.  364 
 365 
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2.5 Traversal on the Mapper-generated landscape revealed a topographic gradient with hub-367 
nodes as a putative transition state 368 
Next, we used a variance-based approach to examine whether the traversal on the landscape - i.e.  369 
going from one corner to the next (or towards the center) – was smooth (i.e., continuous) or 370 
bumpy (i.e., discrete). To this end, we estimated the mean activation for each RSN (across all the 371 
brain volumes) within each node, followed by estimating variation (standard deviation; S.D.) in 372 
the mean network-level activation across all RSNs. High variance (or S.D.) indicated dominance 373 
of one or more RSNs, whereas low variance indicated uniformity across mean RSN activation. 374 
As shown in Fig. 5A (using a representative participant, MSC-01), annotating Mapper-generated 375 
graphs using this variance-based approach revealed a topographic gradient in the dynamical 376 
landscape, where the peripheral nodes had higher variance with a continual decrease in variance 377 
when going towards the center of the graph. To further illustrate the gradient between peripheral 378 
dominating nodes and central hub (non-dominating) nodes, using MSC-01, Fig. 5A shows three 379 
trajectories (one for each of the three dominating networks) and the corresponding boxplots for a 380 
sample of nodes from each trajectory – starting from the dominating node on the periphery and 381 
moving towards the hub (or non-dominating) nodes. As evident, peripheral nodes represent time 382 
frames where one or more RSNs were more activated than others, while as one traverses towards 383 
the center of the graph the nodes represent time frames with uniform mean-level activation 384 
across all RSNs. Fig. 5B shows average distribution of S.D. values, over ten MSC participants, 385 
for hub nodes (blue) and other nodes (orange). As evident, the hub nodes had significantly lower 386 
S.D. values than non-hub nodes (for both splits of the data; odd: F(1,18)=132.96, p = 9.57 x 10-10 387 
and even: F(1,18)=102.7, p=7.3 x 10-09) – suggesting uniform distribution across all RSNs. 388 
Similar gradients were observed across all ten MSC participants (Fig. 5C and Fig. S4).  389 
 390 
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 391 
 392 
Fig. 5: Annotating the traversal on Mapper-generated landscape using a variance-based approach 393 
revealed a dynamical topographic gradient. To quantify the variation in RSN-based dominance, we first 394 
estimated mean activation for each RSN across the time frames within each node, followed by estimating 395 
variation in mean activation across RSNs. High variance (or S.D.) indicated dominance of one or more 396 
RSN while low variance (or S.D.) indicated uniformity across RSN activation. [A] Annotating Mapper-397 
generated graphs using variance-based approach revealed a dynamical topographic gradient, where the 398 
peripheral nodes had higher variance with a continual decrease in variance when going towards the 399 
center of the graph. The graph is shown from a representative participant (MSC-01; odd sessions). Three 400 
trajectories are shown, starting from peak dominance for each of the three RSNs (default mode, ventral 401 
attention, and auditory) and ending towards the middle of the graph with nodes of no particular network 402 
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dominating. Boxplots, for representative nodes on each trajectory, represent activation (z-scored) in the 403 
corresponding RSNs across all time frames (TRs) within each represented node. [B] Group averaged 404 
distribution of S.D. values, over ten MSC participants, for hub nodes (blue) and other nodes (orange) is 405 
shown, with S.E.M. as shaded value. Evidently, the hub nodes had significantly low variance across mean 406 
RSN activation (indicating uniformly distributed RSN), while the non-hub nodes were highly variant across 407 
mean RSN activation. [C] Shows variance-based annotation of Mapper graphs for two other participants 408 
from MSC dataset (odd sessions). The topographic gradient was observed consistently across 409 
participants and for both even and odd sessions (see Fig. S4). 410 
 411 
To confirm whether the brain configuration represented by the hub nodes does indeed act as a 412 
putative switch, we examined changes in brain activation patterns in the time domain, i.e., at the 413 
single time frame (or brain volume) level. The RSN-based proportions from each graph node 414 
were propagated to the individual time frames (or TRs) represented by that node. For nodes 415 
dominated by any particular RSN, the encompassing TRs were assigned the dominant RSN. For 416 
hub nodes, where RSNs were uniformly distributed, the encompassing TRs were assigned a new 417 
label (Hub). Fig. 6A depicts labels for each TR, across the ten MSC participants, separately for 418 
the two splits of the data. To better characterize transitions in RSN-based states we estimated the 419 
discrete-time finite-state Markov chains74  for each participant and data half. Note the strong 420 
visual similarity between rows of the two session matrices. 421 
 422 
Fig. 6B shows transition probabilities estimated from the Markov chain estimation averaged 423 
across all participants, separately for the two splits of the data. While estimating Markov chains 424 
and associated transition probabilities, we ignored putatively artifactual transitions associated 425 
with frames discarded due to head movement and due to stitching the sessions together. As 426 
evident from the estimated transition probabilities, brain configuration represented by the hub 427 
nodes (or our putative transition state) was observed to be the most sought-after destination from 428 
any other RSN-dominated state. Fig. 6C shows the same result at the individual participant level, 429 
such that from any other RSN-dominant state the brain was more likely to transition to the hub 430 
transition state – providing evidence for the hub state to be a likely intermediary between any 431 
two RSN-dominating states. Transition probabilities can also be represented as a graph (show in 432 
Fig. 6D). Lastly, we observed the transition probabilities to be highly subject-specific and 433 
reliable across sessions (Fig. 6E). A one-way ANOVA showed transition probability matrices 434 
across the two halves of data were more similar within participant (highly correlated) than across 435 
participants (F(1,398) = 307.86, p=1.83 x 10-51).  436 
 437 
In summary, traversal directly on the Mapper-generated landscape revealed a continuous 438 
evolution of brain dynamics – a dynamic topographic gradient. Similar traversal in the time 439 
domain (at single frame level) revealed that the brain configurations represented by hub nodes 440 
acted as a putative switch (or a transition state) between different RSN-dominated 441 
configurations. Further, the transition probabilities between states were individual-specific, 442 
indicating a putative future application in precision medicine. 443 
 444 
 445 
 446 
 447 
 448 
 449 
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 450 
Fig. 6: Traversal in the temporal domain at the single frame level. [A] Depicts transitions in brain 451 
activation over time frames in terms of dominant individual-specific RSNs (or hub-like states). Each time 452 
frame (TR) was labeled from the Mapper-generated shape-graphs by propagating the RSN-based 453 
annotation from each graph node to the time frames represented by that node. In addition to RSNs, a new 454 
label representing hub-nodes was also generated. As evident, hub state was often visited by participants 455 
across both data splits. Only showing a subset of timeframes (first 600 frames) for each participant for 456 
ease of viewing. [B] A discrete-time Markov chain was estimated using RSN-based labels for each 457 
participant and data split. While estimating transition probabilities, transitions due to motion censoring 458 
and session boundaries were discarded. Here, we present transition probability matrix averaged over all 459 
10 MSC participants. Diagonals were suppressed to better illustrate transition probabilities across states. 460 
The hub state was observed to be the most sought-after destination from any other state. [C] Boxplots 461 
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depicting high probability of transitioning into the hub state from any other state, across all participants. 462 
[D] Estimated Markov chain averaged across all participants. As evident, the hub-state was observed to 463 
be most central and with highest in-degree. [E] The transition probability matrices (as show in B) were 464 
reliably estimated at the individual participant level (i.e., high within-participant similarity), indicating a 465 
putative application in precision medicine approaches.  466 
 467 
2.6 Replicating main results in an independent dataset  468 
Although split-half data validation was performed for the MSC dataset, we further replicated the 469 
main results in an independent multi-session resting state fMRI dataset (100 unrelated 470 
participants from the Human Connectome Project (HCP)25). In the HCP dataset, four 15 min 471 
sessions of resting state scans were acquired over a period of two days. Thus, for each individual, 472 
we could analyze up to 1 hour of resting state fMRI data. It is important to note that the HCP 473 
data were substantially lower in scan duration than the MSC dataset (with 5 hours of resting state 474 
fMRI data per individual). Further, instead of using individually-defined parcellation, we used a 475 
group parcellation (Gordon atlas with 333 brain regions75).  476 
 477 
After generating Mapper landscapes for each HCP participant, we first compared the degree 478 
distribution of graphs generated from real versus null data (from phase randomization and 479 
multivariate AR models). Like the MSC data, the HCP data also showed heavy (fat) tail 480 
distributions as compared to both null models. Statistical difference in the proportion of high-481 
degree (>20) nodes in the real versus null data was assessed using one-way ANOVA (F(2, 225) 482 
= 288.11, p = 8.88 x 10-63; Fig. 7A). Mapper-generated landscapes from the HCP data also 483 
contained hub-nodes (Fig. 7B). 484 
 485 
Next, we annotated Mapper-generated graphs using the relative engagement of a set of canonical 486 
large-scale resting state networks (RSNs). As opposed to individually-defined networks for the 487 
MSC dataset, we used a group parcellation (Gordon atlas with 333 brain regions75) for the HCP 488 
data. Results are shown for three representative participants in the Fig. 7C. We observed highly 489 
connected and central hub nodes contained brain volumes where no particular RSN was 490 
activated, whereas nodes with brain volumes dominating from one particular RSN tend to 491 
occupy the peripheral corners of the landscape. The maps for individual subjects all 492 
demonstrated this same basic pattern, although there was evidence to suggest that different 493 
combinations of RSNs were dominant in different individuals.  494 
 495 
Lastly, for the HCP dataset, we examined traversal on the landscape as well as temporal 496 
evolution of brain activation patterns at the single time-frame level. Using a variance-based 497 
approach, as for the MSC-dataset, we again observed a smooth topographic gradient in the 498 
dynamical landscape of HCP participants, where the peripheral nodes had higher variance with a 499 
continual decrease in variance when going towards the center of the graph (Fig. 7C-D). For the 500 
temporal evolution of brain activation patterns at the single TR level RSN-based proportions 501 
from each graph node were propagated to the individual time frames (or TRs) represented by that 502 
node. Fig. 7E depicts RSN-based labels for each TR, across the 30 representative HCP 503 
participants. Using discrete-time finite-state Markov chains, we also estimated transition 504 
probabilities, while ignoring putatively artifactual transitions associated with frames discarded 505 
due to head movement and due to stitching together sessions. In parallel to the MSC data, the 506 
HCP data also provided evidence for the hub-state to be the most sought-after destination from 507 
any other RSN-dominated state; thereby providing a putative role of intermediating between 508 
other RSN-dominant states (Fig. 7F-G). 509 
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 510 
 511 
Fig. 7 Replicating results using an independent dataset from the Human Connectome Project (HCP). [A] 512 
Degree distribution of graphs generated from the real versus null data (from phase randomization and 513 
multivariate AR models) revealed heavy (fat) tail distributions in the real data. [B] Highlight hub nodes for 514 
three representative participants. [C] Annotating Mapper-generated graphs using the relative engagement 515 
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of a set of canonical large-scale resting state networks (RSNs). Like MSC data, the HCP dataset also 516 
revealed that highly connected and central hub nodes contained brain volumes where no particular RSN 517 
was activated, whereas nodes with brain volumes dominating from one particular RSN tend to occupy the 518 
peripheral corners of the landscape. Using a variance-based approach, like the MSC-dataset, we again 519 
observed a smooth topographic gradient in the dynamical landscape of HCP participants. [D] Traversal in 520 
the temporal domain at the single frame level for 30 representative HCP participants. Only showing a sub-521 
set of timeframes for ease of view. Color depicts transitions in brain activation over time frames in terms 522 
of dominant individual-specific RSN (or hub-like state). [E] Group averaged distribution of S.D. values, over 523 
all the HCP participants, for hub nodes (blue) and other nodes (orange) is shown, with S.E.M. as shaded 524 
value. [F] Group averaged transition probability matrix derived using Markov chains, indicating the hub-525 
state to be the most sought-after destination from any other RSN-dominated state. Diagonal values were 526 
set to zero for ease of visualization. [G] Estimated Markov chain for two representative participants. As 527 
evidence the hub-state was observed to be most central and with highest in-degree. 528 
 529 
3. Discussion  530 
Understanding how the brain dynamically adapts its distributed activity in the absence of any 531 
extrinsic stimuli lies at the core of understanding cognition. Although several innovative 532 
approaches have been developed to study the dynamical properties of intrinsic brain activity at 533 
rest, the organizational principles governing transitions in spontaneous activity are not fully 534 
understood. For example, it is unclear whether transition from one brain state to another is direct, 535 
or whether the brain passes through a set of characteristic intermediary states. Further, while 536 
previous work defined brain states at the group level, it is unclear whether individual differences 537 
exist in terms of how the brain states themselves are configured. Lastly, more work is needed to 538 
understand whether temporal transitions in brain activity are best conceptualized as continuous 539 
or discrete. To address these foundational questions, using a precision dynamics approach at the 540 
single participant level, we constructed the overall landscape of whole-brain configurations at 541 
rest. Altogether, four robust findings are observed: (1) across all participants, the landscape of 542 
whole-brain configurations contains centrally located hub-nodes that are often visited and likely 543 
acted as a switch or transition state between different configurations to organize the spontaneous 544 
brain activity; (2) transitions occur as a smooth dynamic topographic gradient in the landscape, 545 
suggesting a continuous (as opposed to discrete) setup for brain state transitions at rest; (3) 546 
importantly transition probabilities between one state to another, at the level of a single time 547 
frame, are subject-specific and provide a stable signature of that individual; and (4) while the 548 
hub-nodes are characterized by a uniform representation of canonical RSNs, the periphery of the 549 
landscape is dominated by a subject-specific combination of RSNs (which are also stable across 550 
sessions). All the findings reported in this work are corroborated using split-half validation and 551 
replication in an independent dataset. Together, using precision dynamics we identify several 552 
rules or principles organizing spontaneous brain activity. 553 
 554 
We begin the discussion by first providing a coarse viewpoint of our results that aligns well with 555 
previous and more recent works that have identified brain dynamics at rest as a bistable 556 
phenomenon. We then dive deeper into the rich subject-specific idiosyncrasies that our work 557 
revealed as our approach allowed precision analytics. We then provide a discussion on how our 558 
approach can putatively address common limitations of the previous work. Lastly, we provide 559 
limitations of our work and avenues for future applications.  560 
 561 
Coarse viewpoint: bistable brain dynamics at rest 562 
From a coarse vantage point, the presence of low-amplitude (or close to mean activation) hub 563 
configurations versus high-amplitude peripheral configurations points towards bistable brain 564 
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dynamics at rest. This bistable phenomenon is in line with the previous theoretical12–14 and recent 565 
empirical work that has also shown brain dynamics during the resting state to be predominantly 566 
bistable34,76,77. In contrast to the null models, real data revealed significantly higher numbers of 567 
hub nodes that were centrally located in the landscape and were representing whole-brain 568 
configurations with mean-level activity across all RSNs. The periphery of the landscape, on the 569 
other hand, was representative of one or a few dominant RSNs.   570 
 571 
Using Hidden Markov Models (HMM), van der Meer and colleagues recently reported brain 572 
dynamics during rest to be primarily driven by whole-brain configurations where all RSNs were 573 
uniformly expressed with amplitude close to mean network activities, while configurations with  574 
dominant RSNs were only evident sporadically76. At the coarse level, our results are in line with 575 
these findings as we also observed intrinsic brain activity to be largely driven by whole-brain 576 
configurations with uniform RSN representation (i.e., hub-nodes), while configurations with 577 
dominant RSNs (i.e., peripheral nodes) were evident sporadically. However, it is important to 578 
note that we used precision connectomics data (with longer duration scans) and individual-level 579 
definition of brain configurations (as opposed to group-level in case of HMM). These data and 580 
methodological enhancements led us to examine finer details about resting brain dynamics as 581 
detailed in the next sub-section. 582 
 583 
In another work, also using HMMs, Vidaurre and colleagues found that transitions in intrinsic 584 
brain activity are stochastic and cycles between two major meta-states, where the first meta-state 585 
was associated with unimodal networks (i.e., sensorimotor) and the second meta-state involves 586 
regions related to higher order cognition34,78. Across individuals, the authors observed one of the 587 
two meta-states to be dominant, such that the brain cycled between networks within a meta-state 588 
more frequently than across meta-states. To anchor the topographical properties of the observed 589 
landscape of whole-brain configurations, we computed similarity between RSNs in terms of their 590 
co-localization on the Mapper-generated graph. Co-localization of two networks on the Mapper-591 
generated graph implies higher chances of co-activation. As shown in Fig. 4D, at the group-592 
level, we also observed a hierarchy of network co-localization, broadly separating unimodal 593 
sensorimotor and higher-order cognitive networks. This group-level hierarchy was stable across 594 
sessions. However, we also observed individual differences in network co-localization that were 595 
highly subject-specific and not exactly following the hierarchy between unimodal and higher-596 
order networks, suggesting the promise of precision dynamics over group-level approaches.  597 
 598 
In another recent work, Esfahlani and colleagues showed bistable brain dynamics at rest using 599 
edge-level co-fluctuations. The authors observed the resting brain to oscillate between high- and 600 
low-amplitude edge-level co-fluctuations. Further, the authors showed that the relatively short-601 
lived high-amplitude edge co-fluctuations i) drove the functional organization of the resting brain 602 
(estimated using functional connectivity; rsFC) ii) were observed to be highly correlated with 603 
high-amplitude BOLD (activity) fluctuations; and iii) were more similar within than between 604 
subjects77,79. Although we examined transitions in whole-brain activity (as compared to co-605 
fluctuations between regions), we also observed the amplitude-level dichotomy, such that the 606 
peripheral nodes of the landscape contained high-amplitude network-specific activations while 607 
the hub-nodes contained mean-level low-amplitude activations. We also found that the co-608 
localization of RSNs (primarily driven peripheral nodes) were highly subject specific. 609 
 610 
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From the metabolic point of view, Zalesky and colleagues showed that the resting brain 611 
dynamically transitions between high- and low-efficiency states30. The high efficiency states 612 
were characterized by global coordination across brain regions, thus optimizing information 613 
processing at a putatively larger expense of metabolic energy. The low efficiency states on the 614 
other hand were characterized by lack of global coordination and putatively requiring minimal 615 
metabolic expenditure. Although our results are based on whole-brain activation patterns and do 616 
not use sliding windows, the whole-brain configurations represented by hub nodes could 617 
putatively require minimal metabolic expenditure due to the low or close to mean activation 618 
amplitude, whereas the configurations represented by the peripheral nodes could potentially 619 
require high metabolic expenditure as they show high amplitude network-specific activation. It is 620 
important to note that the approaches that focus on co-fluctuations between brain regions might 621 
miss brain configurations represented by hub-nodes due to their low-amplitude and putatively 622 
low co-fluctuations between brain regions. Future work is required to carefully combine 623 
activation-based fluctuations in brain dynamics with fluctuations in coordination across brain 624 
regions to better understand how changes in network activations relate to co-fluctuations. 625 
 626 
Fine viewpoint: rich and idiosyncratic intrinsic brain  627 
Our approach was developed to examine brain activity dynamics at the single participant level, 628 
as opposed to previous approaches that have used group-level data to define states30,34,76. Thus, 629 
along with precision connectomics data, our precision dynamics approach facilitated finer 630 
examination of dynamical organization at rest than before. Although across participants we 631 
observed bistable brain dynamics of transitioning between hub and peripheral states, our 632 
approach also revealed a large degree of individual variability in terms of the configuration of 633 
peripheral nodes. Different combinations of resting state networks dominated peripheral nodes, 634 
albeit these combinations were highly subject-specific and consistent across sessions. Further, 635 
estimated temporal transition probabilities between RSN-dominated states were also more 636 
similar within- than between-participants. Overall, pointing towards future application of our 637 
approach in precision medicine.  638 
 639 
Examining the traversal on the landscape as well as across the individual timeframes suggest that 640 
the brain configurations represented by hub-nodes were putatively acting as a transition state 641 
between different parts of the landscape (and respective brain configurations or states). At the 642 
single timeframe level, the hub state was also observed to be the most sought-after destination 643 
from any other RSN-dominated state. Thus, suggesting a putative intermediary and faciliatory 644 
role of the low (or close to mean) amplitude hub states in enabling neural switching between 645 
high-amplitude RSN-dominated states. Descriptively, the hub-nodes can be thought of serving a 646 
role akin to transportation hubs (e.g., the Grand Central Station for trains), such that these hub-647 
nodes facilitate efficient travel as well as cost-effective transportation architecture. It is also 648 
possible that the hub nodes represent washout (or recovery) configurations of the brain between 649 
high-amplitude brain states represented by the peripheral nodes. Future work using our precision 650 
dynamics approach in conjunction with theoretical biophysical modeling80 and neuromodulation 651 
experiments81 is needed to better understand how the hub-states facilitate transitions in the 652 
intrinsic brain.  653 
 654 
When the Mapper-generated graphs were annotated by variability in mean activation across 655 
RSNs, a smooth topographic gradient was consistently observed across all participants. The 656 
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spontaneous brain activity was observed to be spatiotemporally organized in a continuous 657 
gradient with hub- and peripheral-nodes at the opposite ends of the spectrum. Recent work has 658 
shown existence of spatial gradients that provide organizational principle for the anatomical 659 
organization of large-scale brain networks as a spectrum from unimodal to heteromodal 660 
networks82. Here, we provide evidence for a dynamical topographic gradient organizing 661 
spontaneous brain activity at rest. Looking forward, our precision dynamics approach can be 662 
used to understand differences in temporal organization across various mental health disorders.  663 
  664 
Methodological advances: addressing previous issues 665 
Our TDA-based Mapper approach provides a novel avenue to conceptualize fluctuations in brain 666 
dynamics at rest, while addressing several limitations with similarly aimed previous approaches. 667 
Broadly speaking, most of the previous approaches conceptualized transitions in the at-rest brain 668 
by either estimating inter-regional (or inter-voxel) co-fluctuations over time (e.g., sliding 669 
window Pearson’s correlation44, dynamical conditional correlation45, and multiplication of 670 
temporal derivatives46) or by exploring brain activations on the basis of sparse events (e.g., co-671 
activation patterns83, paradigm-free mapping48 and point process analysis49). Further, previous 672 
work clustered the observed transitions into a set of configurations (or states) at the group level, 673 
thereby putatively missing subject-level idiosyncrasies30,34,76. Although several key insights were 674 
revealed using previous approaches, e.g., bistability of the resting brain76 and applications in 675 
clinical realms have been attempted84, several methodological limitations were also 676 
identified28,39,85. First, it is unclear what spatiotemporal scale is ideally suited for studying brain 677 
dynamics, i.e., what window length (or threshold for tagging sparse events) is ideal for 678 
measuring transitions28. Further, a priori knowledge is also required to estimate the number of 679 
configurations (or states) during clustering. Second, recent work using linearity preserving 680 
surrogate data showed that some of the findings recovered using time-varying analysis could be 681 
artifactual due to sampling variability39,86. Third, statistical models like HMM also require strict 682 
assumptions related to the mutual exclusivity of brain states and require a priori knowledge about 683 
number of states76.  684 
 685 
Our Mapper-based approach can work directly at the spatiotemporal scale at which the data were 686 
acquired and thus bypasses the issues associated with sliding-window based analysis (e.g., how 687 
to choose window-length and reduce artifacts related with sampling variability). Recently, a 688 
similar Mapper-based approach was shown to capture and track the task-evoked brain dynamics 689 
that matched known ground truth transitions associated with the experimental design31. Further, 690 
our Mapper-based approach also distinguishes itself from the category of exploring dynamics 691 
based on sparse events, because the output does not necessarily assume that brain dynamics arise 692 
from only a subset of significant events but permits exploration of the continuous unfolding of 693 
dynamics across each time frame. Further, the Mapper-based approach does not require 694 
estimation of correlation (or connectivity) between parcellated brain regions and instead use 695 
whole-brain activation maps to extract the overall landscape of brain dynamics. Lastly, no 696 
assumptions are required to be made regarding mutual exclusivity of brain states or resting state 697 
networks. Instead, Mapper generated graphs can be later annotated (e.g., using pie-chart based 698 
visualization) to reveal overlapping communities (or states). 699 
 700 
Limitations and future work 701 
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Some limitations of our work and associated avenues for future work should also be noted. 702 
Although we used a precision individual connectomics dataset to show stable results with ~2.5 703 
hours of resting state fMRI data per individual, acquiring that much data from individual patients 704 
will initially only be feasible in cases where the clinical needs are very high, e.g., when planning 705 
neurosurgical interventions such as resecting epileptic foci. Thus, we also replicated the main 706 
findings in an independent cohort from the HCP, with ~1 hour of rsfMRI data per individual. 707 
However, future work is required to examine whether our approach would work with datasets 708 
that are not as dense (e.g., traditional rsfMRI scans of 10-20 min of rsfMRI data) – potentially 709 
leveraging alternative acquisition paradigms87.  710 
 711 
Another potential limitation and avenue for future work includes combining activation-based 712 
dynamics with co-fluctuation of signal across brain regions. New methods are being developed 713 
that can provide fluctuations in functional connectivity at the single frame35. Thus, in the future, 714 
TDA-based approaches could be used to combine different degrees of interactions between brain 715 
regions ranging from brain activations themselves to higher-order interactions. Future work is 716 
also required to better understand what purpose the hub state serves in intrinsic dynamics and 717 
whether similar hub states can be seen under other states of consciousness (e.g., anesthesia or 718 
sleep). One putative hypothesis could be that the intermittent hub state corresponds to a wash-out 719 
period required by the brain before moving from one precise brain configuration to the next. 720 
Lastly, due to better signal to noise ratio, we restricted our analysis to cortical activity only. 721 
Future work is thus required to include sub-cortical structures and cerebellum to better 722 
understand their role in the dynamical organization of the brain. 723 
 724 
Although the topology of Mapper-generated graphs was largely similar across participants, key 725 
subject-specific idiosyncrasies were also observed. For example, which networks (or group of 726 
networks) dominated the periphery of the landscape was highly subject-specific and reliable 727 
across sessions. Further, the Markov chains, estimated from individual time-frame data, were 728 
also observed to be not only subject-specific but also reliable across sessions. These results 729 
provide preliminary evidence that our Mapper-related approach contains potential utility for 730 
precision medicine approaches. Due to the small number of participants in the MSC dataset and 731 
only a moderate group size of the HCP cohort used here, we did not attempt to associate 732 
topological properties of Mapper-generated landscapes and trait behavior (e.g., intelligence); as 733 
large samples are required for reproducible brain-behavioral phenotypic associations88. Future 734 
work, using data from large consortia (e.g., leveraging the Adolescent Brain Cognitive 735 
Development (ABCD) Study; 89 (n>11,000)) such brain-behavior associations could be 736 
examined.  737 
 738 
Conclusions 739 
Altogether, we present a novel approach to reveal the rules governing transitions in intrinsic 740 
brain activity that could be useful in understanding both typical and atypical cognition. Our work 741 
extends previous work both methodologically and conceptually. We observed the dynamical 742 
landscape of at-rest brain to contain a shared attractor-like basin that acted like an intermediate 743 
state where all canonical resting-state networks were represented equally, while the surrounding 744 
periphery had distinct network configurations. Traversal through the landscape suggested 745 
continuous evolution of brain activity patterns at rest. Lastly, differences in the landscape 746 
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architecture were more consistent within than between subjects, providing evidence that this 747 
approach contains potential utility for precision medicine approaches. 748 
 749 
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4. Online Methods 17 
4.1 Datasets 18 
Midnight Scan Club (MSC) dataset 19 
These data were collected from ten healthy, right-handed, young adult subjects (5 females; age: 20 
24-34). One of the subjects is author NUFD, and the remaining subjects were recruited from the 21 
Washington University community. Informed consent was obtained from all participants. The 22 
study was approved by the Washington University School of Medicine Human Studies 23 
Committee and Institutional Review Board. These data were obtained from the OpenNeuro 24 
database. Its accession number is ds000224. 25 

For details regarding data acquisition please see Gordon et al. 20171. Briefly, MRI data 26 
acquisition for each subject was performed on a Siemens TRIO 3T scanner over the course of 12 27 
sessions conducted on separate days, each beginning at midnight. Structural MRI was conducted 28 
across two separate days. On ten subsequent days, each subject underwent 1.5 hr of functional 29 
MRI scanning beginning at midnight. In each session, thirty contiguous minutes of resting state 30 
fMRI data were acquired, in which subjects visually fixated on a white crosshair presented 31 
against a black background. Across all sessions, each subject was scanned for 300 total minutes 32 
during the resting state. All functional imaging was performed using a gradient-echo EPI 33 
sequence (TR = 2.2 s, TE = 27 ms, flip angle = 90, voxel size = 4 mm x 4 mm x 4 mm, 36 34 
slices).  35 
 36 
Human Connectome Project (HCP) dataset 37 
We gathered these data from the Human Connectome Project database2–4. We specifically chose 38 
the n=100 unrelated cohort (54 females, mean age = 29.1 ± 3.7 years). This cohort of subjects 39 
ensures that the participants are not family relatives. As per the HCP protocol guidelines, all 40 
participants gave written informed consent for data collection. The HCP scanning protocol was 41 
approved by the local Institutional Review Board at Washington University in St. Louis. All 42 
experiments were performed in accordance with relevant guidelines and regulations.  43 

A total of 4 resting state fMRI runs were acquired from each participant, where each run 44 
was approximately 15 min long. The resting-state fMRI runs (HCP filenames: rfMRI_REST1 45 
and rfMRI_REST2) were acquired in separate sessions on two different days, with two different 46 
acquisitions (left to right or LR and right to left or RL) per day5.  47 
 48 
4.2 Preprocessing 49 
4.2.1 Midnight Scan Club (MSC) 50 
Preprocessing for these data is described in detail elsewhere1. Here, we briefly list the steps. All 51 
functional data were preprocessed to reduce artifact and to harmonize data across sessions. All 52 
functional data underwent correction for interleaved acquisition, intensity normalization, and 53 
head movement. Atlas transformation was computed by registering the mean intensity 54 
image from the first BOLD session to Talairach atlas space via the average high-resolution T2-55 
weighted image and average high-resolution T1-weighted image. This atlas transformation, mean 56 
field distortion correction, and resampling to 3-mm isotropic atlas space were combined into a 57 
single interpolation using FSL’s applywarp tool6 .  58 
 To reduce spurious variance due to artifacts, further preprocessing was done on each 59 
resting state fMRI session. Denoising was accomplished by regression of nuisance time series 60 
following a CompCor-like7 (i.e., component-based) procedure, described in detail elsewhere8. 61 
Briefly, a design matrix was constructed to include the 6 rigid parameters derived by 62 
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retrospective motion correction, the global signal averaged over the brain, and orthogonalized 63 
waveforms extracted from the ventricles, white matter and extra-cranial tissues (excluding the 64 
eyes). Frame censoring (scrubbing) was computed on the basis of both frame-wise displacement 65 
(FD) and variance of derivatives (DVARS)9). Rigid-body motion parameters were low-pass 66 
filtered (< 0.1 Hz) prior to FD computation to remove respiratory artifacts in head-motion 67 
estimates10. The data then were temporally bandpass filtered prior to nuisance regression, 68 
retaining frequencies between 0.005 Hz and 0.1 Hz. Censored frames were replaced by linearly 69 
interpolated values prior to filtering. The final set of regressors was applied in a single step to the 70 
filtered, interpolated BOLD time series. The temporally masked (or censored) frames were then 71 
removed for further analysis. 72 

To reveal individual-specific parcellation of the brain, a gradient-based parcellation 73 
method was used. See Gordon et al. 20171 for more details on this approach. Across all 74 
participants, the mean ± SD number of parcels created was 620.8 ± 39.4. The average time 75 
course within each resulting parcel was then calculated. 76 
 77 
4.2.2 Human Connectome Project (HCP) 78 
Minimally processed data were gathered from the HCP database. This minimal processing 79 
includes spatial normalization, motion correction, and intensity normalization13. We additionally 80 
processed these data using fMRIPrep 1.5.914. 81 

The fMRIPrep based anatomical preprocessing included correction for intensity non-82 
uniformity (INU) with N4BiasFieldCorrection15, distributed with ANTs 2.2.016, and used as 83 
T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with 84 
a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 85 
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 86 
white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w 87 
using fast (FSL 5.0.917). Volume-based spatial normalization to two standard spaces 88 
(MNI152NLin6Asym, MNI152NLin2009cAsym) was performed through nonlinear registration 89 
with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and 90 
the T1w template. 91 

The fMRIPrep based functional preprocessing included following steps. First, a reference 92 
volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. 93 
The BOLD reference was then co-registered to the T1w reference using flirt (FSL 5.0.9;6) with 94 
the boundary-based registration cost-function18. Co-registration was configured with nine 95 
degrees of freedom to account for distortions remaining in the BOLD reference. Head-motion 96 
parameters with respect to the BOLD reference (transformation matrices, and six corresponding 97 
rotation and translation parameters) are estimated before any spatiotemporal filtering 98 
using mcflirt19 (FSL 5.0.9). The BOLD time-series were resampled onto their original, native 99 
space by applying the transforms to correct for head-motion. Several confounding time-series 100 
were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and 101 
three region-wise global signals. FD and DVARS are calculated for each functional run, both 102 
using their implementations in Nipype (following the definitions by Power et al. 201420). The 103 
three global signals are extracted within the CSF, the WM, and the whole-brain masks. The 104 
head-motion estimates calculated in the correction step were also placed within the 105 
corresponding confounds file.  106 
 Similar to the pre-processing of MSC dataset, here we first calculated temporal masks to 107 
flag motion-contaminated frames. We also used a FD > 0.2 mm as threshold to flag a frame as 108 
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motion contaminated. For each such motion-contaminated frame, we also flagged a back and two 109 
forward frames as motion contaminated. Participants were dropped from further analysis, if 110 
>20% frames were flagged as motion contaminated. Hence, out of the 100 participants, further 111 
analysis was run on n=76 HCP participants. Following construction of temporal mask for 112 
censuring, similar to the MSC data, the HCP data were processed with the following steps: (i) 113 
demeaning and detrending, (ii), multiple regression including: whole brain, CSF and white 114 
matter signals, and motion regressors derived by Volterra expansion11, with temporally masked 115 
data were ignored during beta estimation, (iii) interpolation across temporally masked frames 116 
using linear estimation of the values at censored frames12 so that continuous data can be passed 117 
through (iv) a band-pass filter (0.009 Hz < f < 0.08 Hz). The temporally masked (or censored) 118 
frames were then removed for further analysis. 119 
 As individual-specific parcellation was not available for the HCP dataset, we used group 120 
parcellation from Gordon et al (2016)21. The parcellation is based on boundary maps defined 121 
using homogeneity of resting state functional connectivity patterns.  122 
 123 
4.3. Mapper pipeline 124 
The Mapper pipeline was individually run on each participant. After preprocessing, parcellated 125 
time-series (dimension: time-frames x number of parcels) was fed into the Mapper pipeline. 126 
These input time-series were concatenated across sessions within participant. For the MSC 127 
dataset, the input time-series were concatenated across odd versus even sessions, whereas for the 128 
HCP dataset, the input time-series were concatenated across all four available sessions. To 129 
harmonize data across sessions, data were z-scored (column-wise) before concatenating across 130 
sessions.  131 

Details of Mapper analysis pipeline are presented elsewhere22–24. Briefly, the Mapper 132 
analysis pipeline consists of four main steps. First, Mapper involves embedding the high-133 
dimensional input data into a lower dimension 𝑑, using a filter function 𝑓. For ease of 134 
visualization, we chose 𝑑=2. The choice of filter function dictates what properties of the data are 135 
to be preserved in the lower dimensional space. For example, linear filter functions like classical 136 
principal component analysis (PCA) could be used to preserve the global variance of the data 137 
points in the high dimensional space. However, a large number of studies using animal models 138 
and computational research suggest that inter-regional interactions in the brain are multivariate 139 
and nonlinear25–27. Thus, to better capture the intrinsic geometry of the data, a nonlinear filter 140 
function based on neighborhood embedding was used22. Thus, instead of measuring Euclidean 141 
distances, geodesic (or shortest path) distances were computed between whole-brain 142 
configurations (volumes) in the input space. Followed by embedding the graph distances into a 143 
𝑑-dimensional Euclidean space, while preserving the intrinsic geometry of the original input. 144 
Nonlinear functions like neighborhood embedding allows for preservation of the local structure 145 
evident in the original high-dimensional space after projection into a lower dimensional space. 146 
Similar functions have been used previously in the field of manifold learning28–31. In a recent 147 
work, we showed the efficacy of neighborhood embedding in capturing the landscape of whole-148 
brain configurations extracted from a continuous multitask paradigm and task-evoked data from 149 
the Human Connectome Project (HCP)22.  150 

The second step of Mapper performs overlapping n-dimensional binning to allow for 151 
compression and reducing the effect of noisy data points. Based on previous work using fMRI 152 
data22, we divided the lower dimensional space into overlapping bins using a resolution 153 
parameter (#bins) of 30 for the MSC dataset and 14 for the HCP dataset. The resolution 154 
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parameter was adjusted based on differences in the temporal resolution of acquisition. The 155 
%overlap between bins was kept similar across datasets to 70%. Mapper-generated graphs have 156 
been previously shown to be stable for a large variation across parameters for resolution and 157 
%overlap22.  158 

The third step of Mapper includes partial clustering within each bin, where the original 159 
high dimensional information is used for coalescing (or separating) data points into nodes in the 160 
low-dimensional space. Partial clustering allows to recover the loss of information incurred due 161 
to dimensional reduction in step one23,32. Lastly, to generate a graphical representation of the 162 
“shape” of input data, nodes from different bins are connected if any data points are shared 163 
between them.  164 

The Mapper-generated graphs can be annotated (or colored) using meta-information that 165 
was not used to construct the graphs. Here, we annotated these graphs using several meta-166 
analytics – ranging from nodal degree to activation in the known large-scale brain networks.  167 
 168 
4.4 Topological properties 169 
Several topological properties of the Mapper-generated graphs were studied. We first estimated 170 
the nodal degree for each node in the Mapper-generated graphs. In a binary undirected network, 171 
the degree, 𝑘!, of node 𝑖 is the number of edges connecting node 𝑖 with all other 𝑗 = 1…𝑁 − 1 172 
nodes, 173 

𝑘! =+𝐴!"
"#!

 174 

 175 
The histogram of nodal degrees was then plotted to examine degree distribution derived from 176 
real versus null data. In network science, degree distributions can allow us to determine whether 177 
the network contains hubs (highly and centrally connected nodes), e.g., fat tail distributions point 178 
towards the existence of hub nodes. 179 
 180 
Hub nodes in a graph could act as focal points for the convergence and divergence of 181 
information in the network. Previous work has suggested that for reliable identification of hubs 182 
both degree as well as centrality should be taken into account33. Specifically, for degree, we use 183 
the cut-off (>21) revealed by comparison of real data with the null data. For centrality, we use 184 
the previously prescribed measure of closeness centrality33. The closeness centrality of a node is 185 
defined as the inverse of its average shortest path length,  186 
 187 

𝐶$(𝑖) = 	
𝑁 − 1
∑ 𝑙!""#!

 188 

 189 
where 𝑙!" is the shortest path length between nodes 𝑖 and 𝑗.  190 
 191 
Here, for both the MSC and HCP datasets, we chose nodes with top 1% closeness centrality 192 
estimates to define the hub nodes. 193 
 194 
4.5 Graph visualization 195 
The Mapper-generated graphs were annotated (or colored) using several features, including 196 
topological properties (e.g., nodal degree) or properties derived from the meta-information (e.g., 197 
session information). Annotation based on meta-information derived from individual time frames 198 
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(e.g., session or RSN-based activation) were visualized using a pie-chart based visualization – to 199 
present proportional information without averaging data across time frames from each node. A 200 
web-based interface was used to interact with the Mapper-generated graphs. This implementation 201 
was developed using HTML5, Scalable Vector Graphics (SVG), CSS, and JavaScript. 202 
Specifically, we used the D3.js framework (Data-driven documentation; D3) for displaying and 203 
annotating individual participants’ shape graphs. See our DyNeuSR24 toolbox for more 204 
information.  205 
 206 
4.6 Discrete Time Markov Chains 207 
To better characterize transitions at the single time frame level, we estimated the discrete-time, 208 
finite-state, time-homogeneous Markov chains34 for each participant and data split. Matlab’s 209 
𝑑𝑡𝑚𝑐 function was used to estimate these Markov chains, with the empirical count of observed 210 
transitions from state 𝑖 to state 𝑗 as input. To reduce the effect of head movement related artifact 211 
and other artifactual transitions due to stitching even (or odd) sessions together, we ignored 212 
transitions associated with frames discarded due to head movement and due to stitching the 213 
sessions together.  214 
 215 
4.7 Parameter perturbation 216 
Although in the previous work Mapper-generated shape graphs were shown to be robust to a 217 
wide-range of parameter perturbation22, as an additional measure of reliability we again tested 218 
the effect of parameter perturbation on the topological properties (e.g., degree distribution) of the 219 
Mapper-generated graphs. We varied the two main Mapper parameters—i.e., the number of bins 220 
(or resolution, 𝑅) and percentage of overlap between bins (or gain, 𝐺)—to generate 121 different 221 
variations of the Mapper output for each MSC participant and split of the data. These two 222 
binning parameters largely control the overall arrangement of shape graph. Thus, to test whether 223 
the topological properties (e.g., degree distribution) is robust in the face of perturbing 224 
parameters, we varied 𝑅 from 25 to 35 (R-5 to R+5) while 𝐺 was varied from 65 to 75 (G-5% to 225 
G+5%). Results are shown in the Fig. S6. Overall, the properties were reliably observed in most 226 
parameter variations, such that real data was observed to have a fat tail distribution as compared 227 
to the null models. 228 
 229 
4.8 Null models 230 
To account for linear properties of the data (e.g., serial auto-correlation) and sampling variability 231 
issues, we compared Mapper-generated results with two null models, namely, the phase 232 
randomized null35 and the multivariate autoregressive null model36.  Phase randomization 233 
involves randomizing the observed time series by performing Fourier transform, scrambling the 234 
phase and then inverting the transform to get the null model. Multivariate autoregressive 235 
randomization generates null data by first estimating a single brain parcel x parcel 𝐴% matrix, for 236 
each lag 𝑙. Here, an AR order of 𝑝=1 was used, as prescribed by earlier work36. The 237 
autocorrelation function, power spectrum, and other linear properties are preserved under both 238 
phase randomization and multivariate autoregressive randomization. Several instances of null 239 
data were generated for each participant separately (25 per participant and per split of the data). 240 
We used previously published Matlab-based scripts to generate both phase randomization and 241 
multivariate autoregressive null model simulations36. These scripts are available to download 242 
from the Github repository 243 
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(https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/fMRI_dynamics/Liegeois244 
2017_Surrogates/). 245 
 246 
4.9 Code and data availability 247 
The code required for generating the Mapper graphs and corresponding figures presented in the 248 
paper will be made available at https://github.com/braindynamicslab/tda-msc-rsfMRI. The MSC 249 
data used in this work were originally collected by Gordon et al1 and is available for download at 250 
https://openneuro.org/datasets/ds000224/versions/1.0.3. The second dataset was originally 251 
collected as part of the Human Connectome Project (HCP37). We gathered these data directly 252 
from the HCP website (https://db.humanconnectome.org). 253 
 254 
 255 
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