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Abstract. A fast gait is an essential component of any successful team
in the RoboCup 4-legged league. However, quickly moving quadruped
robots, including those with learned gaits, often move in such a way so
as to cause unsteady camera motions which degrade the robot’s visual
capabilities. This paper presents an implementation of the policy gradi-
ent machine learning algorithm that searches for a parameterized walk
while optimizing for both speed and stability. To the best of our knowl-
edge, previous learned walks have all focused exclusively on speed. Our
method is fully implemented and tested on the Sony Aibo ERS-7 robot
platform. The resulting gait is reasonably fast and considerably more
stable compared to our previous fast gaits. We demonstrate that this
stability can significantly improve the robot’s visual object recognition.

1 Introduction

In the robot soccer domain, a fast gait is an important component of a successful
team. As a result a significant amount of recent research has been devoted to
the problem of developing fast legged locomotion for Sony Aibo ERS-7 robots,
leading to considerable improvement in gait speeds [1,2,3,4,5].

However, learned gaits optimized solely for speed tend to produce body mo-
tions that cause the camera to shake. Such unsteady gaits lead to camera images
in which objects are rotated, translated, or blurred compared to camera images
from a steady gait. These images make it difficult for the robot to identify ob-
jects. For example a pink over yellow beacon is usually identified as a pink blob
over a yellow blob, however the pink does not appear above the yellow when the
image is rotated. Thus, unstable gaits degrade a robot’s object recognition and
localization abilities which can cause problems during a game.

This paper proposes optimizing both gait speed and stability simultaneously,
using a multi-criteria objective function. In addition, experiments are described
that explore the idea of using active head movements to compensate for uneven
body motion.

The remainder of this paper is organized as follows. Section 2 presents existing
machine learning techniques that have been applied to optimize gait parameters
for speed. Section 3 describes the parameterized Aibo gait, head motions, and
the policy gradient algorithm used to train new gaits. Section 4 describes our
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training experiments in detail and compares two different methods to offset
unstable body movements. In Section 5, applications of stable gaits and future
work are outlined, and Section 6 concludes.

2 Related Work

When generating quadrupedal robot gaits, the machine learning (ML) approach
offers several advantages over hand-tuning of parameters. Using learning can
reduce the amount of time required to find a fast gait and can be easily applied
to different surfaces and different robots. ML techniques also do not suffer from
the bias a human engineer might have when hand-tuning a gait. For example,
there is evidence that when walking the actual joint angles of the Aibo differ
considerably from requested joint angles, because of the force exerted by the
ground [6]. ML techniques may be less susceptible to this problem than humans
who often hand-tune gaits based on the locus of points the foot ideally moves
through, as opposed to the actual locus the foot moves through.

Applying ML techniques to directly control an Aibo by manipulating joint
angles is a difficult task. Evaluations on physical robots are noisy and take a long
time compared to evaluation in simulation. Moreover, some of the intermediate
exploratory gaits that ML algorithms generate may cause physical damage to
the robot. The Aibo also does not have sensors that can be used during training
that can provide closed loop feedback to the controller.

Nonetheless, reinforcement learning (RL) has been used to learn several sim-
ilar control problems, not limited to Aibo locomotion. RL has been used to
control a model helicopter than can hover while inverted in air [7]. Other ML
techniques have been applied to directly control simulated bipedal robots: in [8]
a central pattern generator was used for rhythm generation in the hips and knees
of a simulated bipedal robot, and a dynamics controller was used to control the
ankles of robot.

Similarly, previous work has shown that ML algorithms can excel at gen-
erating fast gaits for the Aibo by taking advantage of algorithms to optimize
parameterized gaits for desirable characteristics. The earliest attempt to use
ML algorithms to learn a gait used a genetic algorithm to optimize parameters
describing joint velocities and body positions [9].

More recent approaches attempt to learn parameters for gaits that move the
Aibo’s four feet through a locus of points. In previous work, the policy gradient
algorithm has been used, with a half-elliptical locus, to learn an Aibo gait that
is optimized for speed [2,3]. Powell’s method of multidimensional minimization
has been used to optimize a parameterized gait with a rectangular locus [4].
A genetic algorithm that used interpolation and extrapolation for the crossover
step was used to optimize a parameterized gait with a half-elliptical locus [1].
Odometry was used in order to evolve an omni-directional parameterized gait
using a genetic algorithm by training the robot to move forward with its target
orientation constantly changing [10]. In [5], a genetic algorithm and an acceler-
ation model of the Aibo body was used to optimize a parameterized Aibo gait.
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One of the fastest known forward Aibo gaits, which has a speed of 451 mm/s, was
learned using a genetic algorithm and an overhead camera to quickly determine
walk speeds [11].

To the best of our knowledge, all of these approaches have optimized ex-
clusively for walk speed. This paper is based on the observation that the re-
sulting gaits are often unstable, thus degrading the robot’s visual capabilities.
We demonstrate that this problem can be solved by optimizing the gait for both
speed and stability by incorporating stability information into the objective func-
tion. This paper applies two different approaches to learning a stable walk. In
the first approach, the objective function incorporates stability information. In
the second approach, compensatory head movements are performed to counter
the unstable body motions of a fast gait.

3 Background

The Sony Aibo ERS-7 robot is a quadruped with three degrees of freedom in
each leg [12]. A controller must specify the set of twelve joint angles at each
instant in order to specify a gait. Learning a controller for a fast gait by directly
manipulating joint angles is a difficult non-linear control problem. One solution
to this problem is parameterizing a gait by specifying the loci of points that
the Aibo’s feet moves through. Doing so can constrain the search space both
to make it easier to search and to avoid gaits that can damage the robot. This
paper uses a modified version of a half-elliptical parameterized gait modeled
after that presented by Stone et al. [13]. Four additional parameters were added
to this parameterization that govern compensatory head movements designed to
improve head stability.

3.1 Parameterized Motion

The half-elliptical locus used by the fast gait is shown in Figure 1. Each foot
moves through a half-elliptical locus with each pair of diagonally opposite legs
in phase with each other and out of phase with the other two legs (a trot gait).

The four parameters that define the half ellipse are:

1. The length of the ellipse
2. The height of the ellipse
3. The position of the ellipse on the x axis
4. The position of the ellipse on the y axis

The symmetry of the Aibo is used to reduce the number of parameters that
have to be optimized. The length of the ellipse is the same for all four legs
to ensure a straight gait. The left and right sides of the body use the same
parameters to describe the locus of the gait. The height, x position and y position
of the elliptical loci of the front and back two legs use different parameters.

In addition to the leg movements, the head was allowed to make elliptical
compensatory movements in order to cancel the effect of body motions that
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Fig. 1. The half-elliptical locus of each of the Aibo’s feet is defined by length, height
and position in the x-y plane

cause the camera to shake. Figure 2 depicts the two types of head movement
that were used, which have the overall effect of moving the head in an ellipse.
Two parameters were used to specify the head tilt angle limit and head tilt
increment at each timestep. Similarly, two parameters describe the head pan
motions. Initial values for these parameters were determined by testing just a
few sets of values. We leave it to future work to determine how big of an effect
these initial values have.

The 15 parameters that completely define the Aibo’s movements are:

– The front locus: height, x position and y position (3 parameters)
– The rear locus: height, x position and y position (3 parameters)
– Locus length (same for all loci)
– Front body height
– Rear body height
– Time taken for each foot to move through locus
– The fraction of time each foot spends on the ground
– Head tilt limit and increment (2 parameters, with a limit from −10o to 10o)
– Head pan limit and increment (2 parameters, with a limit from −10o to 10o)

3.2 Policy Gradient Algorithm

This paper uses a policy gradient algorithm modeled after that presented by
Kohl and Stone [2] to optimize the Aibo gait in the continuous 15-dimensional
parameter space. The objective function F to be optimized is a function of the
gait speed, acceleration and stability, and is described in detail in Section 4.

The policy gradient algorithm uses an initial parameter vector π = {θ1, ..., θN}
and estimates the partial derivative of the objective function F with respect
to each parameter. This is done by evaluating t randomly generated policies
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Fig. 2. The Aibo can combine pan and tilt head movements (shown as solid lines)
to move the head through an elliptical locus (shown as a dotted line). The center of
ellipse is determine by the landmark the Aibo is looking at. The locus is defined by
four variables: tilt limit, tilt increment, pan limit, and pan increment.

{R1, ...Rt} near π, such that each Ri = {θ1 + δ1, ..., θN + δN} and δj is randomly
chosen to be either +εj , 0, or − εj, where εj is a small fixed value relative to θj .

After evaluating each neighboring policy Ri on the objective function F , each
dimension of every Ri is grouped into one of three categories to estimate an
average gradient for each dimension:

– Avg−ε,n if the nth parameter of Ri is θn−εn

– Avg+0,n if the nth parameter of Ri is θn+0

– Avg+ε,n if the nth parameter of Ri is θn+εn

These three averages enable the estimation of the benefit of altering the nth
parameter by +εn, 0, and −εn. An adjustment vector A of size n is calculated
where An ∈

– 0 if Avg+0,n > Avg+ε,nand Avg+0,n > Avg−ε,n

– Avg+ε,n − Avg−ε,n otherwise

A is normalized and then multiplied by a scalar step size η = 2 to offset small
εj . Finally A is added to π, and the process is repeated for the next iteration.
Figure 3 describes the pseudocode for the policy gradient algorithm.

4 Empirical Results

The policy gradient algorithm described above was implemented and run on the
Aibo as seen in Figure 4. In order to evaluate a particular gait parameterization,
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π ← InitialPolicy
while !done do

{R1, R2, . . . , Rt} = t random perturbations of π
evaluate( {R1, R2, . . . , Rt} )
for n = 1 to N do

Avg+ε,n ← average score for all Ri that have
a positive perturbation in dimension n

Avg+0,n ← average score for all Ri that have a zero
perturbation in dimension n

Avg−ε,n ← average score for all Ri that have a
negative perturbation in dimension n

if Avg+0,n > Avg+ε,n and Avg+0,n > Avg−ε,n then
An ← 0

else
An ← Avg+ε,n − Avg−ε,n

end if
end for
A ← A

|A| ∗ η
π ← π + A

end while

Fig. 3. During each iteration t policies are sampled around π to estimate the gradient,
then π is moved by η in the direction that increases the objective function the greatest

the Aibo was instructed to record various data while repeatedly walking back
and forth between two landmarks.

In order to generate a gait that was both stable and fast, the learning algo-
rithm had to be given an appropriate objective function. In previous work, the
objective function was focused primarily on generating a fast gait. In this paper,
since stability is desired, the objective function was modified. Figure 5 depicts
the images a robot would see with a perfectly stable gait and with an unsteady
gait. The image taken with the unstable gait is rotated and translated compared
to the image taken with a stable gait.1

In order to find a stable gait, the original objective function (which was de-
signed to optimize only for speed) was modified to include stability information.
This modified objective function consists of four components:

1. Mt - The normalized time taken by the robot to walk between the two
landmarks.

2. Ma - The normalized standard deviation (averaged over multiple trials) of
the Aibo’s three accelerometers

3. Md - The normalized distance of the centroid of landmark from the center
of an image.

4. Mθ - The normalized difference between the slope of landmark and the ideal
slope (90o)

1 Videos of a fast gait and a stable gait from the perspective of the robot can be found
at http://www.cs.utexas.edu/~AustinVilla/?p=research/learned_walk

http://www.cs.utexas.edu/~AustinVilla/?p=research/learned_walk
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Fig. 4. The training environment during the gait parameter optimization experiment.
The Aibo records how long it takes to move between two beacons. It also records the
average accelerometer values, the average difference in the position of the centroid of
the beacon and the center of the image, and the average slope of the beacon in the
image.

These four components are combined to create a single objective function F :

F = 1 − (WtMt + WaMa + WdMd + WθMθ) (1)

The different components of the objective function are weighted by Wt, Wa,
Wd, and Wθ, respectively, to optimize for desirable attributes. These weights
are constrained such that their sum is equal to one. For example, if stability is
more important than speed, the time taken to walk between landmarks Wt can be
assigned a smaller value than the other three weights. The next section describes
experiments that compared different weightings of this objective function.

4.1 Learning a Stable Gait

The first experiment we performed was designed to determine how best to train
for stability while learning a gait. To do this, we used two different parame-
terizations for weighting the subcomponents of the objective function. The first
parameterization used Wt = 0.4, Wa = 0.1, Wd = 0.4 and Wθ = 0.1, which
weighted speed slightly more than stability. The second parameterization used
Wt = 0.3, Wa = 0.3, Wd = 0.2 and Wθ = 0.2, which more evenly weighted all
four components.

We used a relatively slow hand-tuned gait as a starting point for the policy
gradient algorithm, since previous work suggested that starting from a faster
gait could hinder learning [2]. This starting point was determined empirically
after trying several different starting gaits. Learning performance was somewhat
sensitive to the initial parameter settings, but we did not extensively optimize
the initial values.



Autonomous Learning of Stable Quadruped Locomotion 105

(a) (b)

Fig. 5. Two visual clues that indicate an uneven gait. (a) shows the average displace-
ment (Md) of the centroid of the landmark with respect to the center of the image. (b)
shows the average rotation (Mθ) of the landmark. If the camera is steady the average
position difference should be zero and the average rotation should be 0o.

Table 1. Percentage reduction in the four objective function components for two dif-
ferent parameterizations without using compensatory head movements. In both cases
the gait becomes more stable while only becoming slightly slower.

Parameterization 1 Parameterization 2
Mt -4.76 -4.5
Ma 34.7 32.6
Md 60 57.14
Mθ 76.9 51.2

Figure 6 shows the progress of the policy gradient algorithm during training
without head movements for the two different objective function parameteriza-
tions. The policy gradient algorithm generates 15 exploratory policies per itera-
tion of the algorithm. In both parameterizations, the slope, distance and average
acceleration measure of the objective function decrease considerably, while the
time measure has a modest increase. This lead us to conclude that the weight
parameters are not sensitive to smaller variations. Detailed results are shown in
Table 1.

4.2 Adding Compensatory Head Movements

The previous results successfully demonstrate the ability of our robots to learn
a stable gait while minimizing speed reduction. However, in that case, all of the
learning was focused on the leg motion. Since the stability objective measures
the robot’s head motion, we hypothesized that allowing the robot to make com-
pensatory head movements could effectively improve stability. To test this hy-
pothesis, similar experiments to those described above were performed, but four
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(a) (b)

Fig. 6. (a) The overall fitness and fitness subcomponents (normalized to [0, 1]) for a
single run with Wt = 0.3, Wa = 0.3, Wd = 0.2, and Wθ = 0.2 without using head
movements. The starting gait has an overall fitness of 0.72 and the final gait has an
overall fitness of 0.83. (b) A similar plot, but with the parameters Wt = 0.4, Wa = 0.1,
Wd = 0.4, and Wθ = 0.1. The starting gait has an overall fitness of 0.78 and the final
gait has an overall fitness of 0.83. Both speed and stability increase during learning.

additional parameters were added that governed compensatory head movements.
For these experiments, the position of the landmark in the camera image was
used to calculate the center of the ellipse that the Aibo’s head moved through,
and the tilt and pan angle limits and increments (set by the policy gradient
algorithm) were used to calculate the length and height of the ellipse.

Figure 7 shows the progress of the policy gradient algorithm during training
with head movements for two different objective function parameterizations. The
policy gradient algorithm generated 19 exploratory policies per iteration of the
algorithm. As in the experiment that learned a stable gait without head move-
ments, the gait became more stable after learning. However, the results from this
experiment were not as good as those from the previous experiment. This sug-
gests that the addition of compensatory head movements does not significantly
improve stability or speed.

Table 2 shows that gait parameters for the initial hand tuned gait, the final
learned gait using head movements, the final learned gait without using head
movements and the previously learned fast gait for comparison. The policy gradi-
ent algorithm was able to find a stable gait without much improvement in speed.
These results demonstrate there is a tradeoff between gait speed and stability.

4.3 How Useful Is Stability?

The main premise of this paper is that walk stability is an important feature
for robot gaits. In particular, we hypothesized that stable gaits would improve
the robot’s visual capabilities. The vision algorithm used for this work converts
each image received from the camera into a pixel-by-pixel color-labeled image,
then groups regions of similarly-colored pixels into bounding boxes. A variety of
heuristics such as size, tilt, and pixel density are used to convert these bounding
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(a) (b)

Fig. 7. (a) Scaled overall fitness and fitness subcomponents for a single run with
Wt = 0.3, Wa = 0.3, Wd = 0.2, and Wθ = 0.2 when compensatory head movements are
enabled. The starting gait has an overall fitness of 0.57 and the final gait has an overall
fitness of 0.76. (b) A similar graph, but with the parameters Wt = 0.4, Wa = 0.1,
Wd = 0.4, and Wθ = 0.1. The starting gait has an overall fitness of 0.60 and the final
gait has an overall fitness of 0.74. In both cases, stability and speed increase, but the
overall effect of compensatory head movements is negative.

boxes into high-level objects. If the robot is using an uneven gait, the camera will
receive many images from an unexpected perspective, which can wreak havoc on
the vision heuristics. The heuristics can always be improved, but this may take
valuable processing time away from other components of the robot. Many vision
algorithms employ such heuristics, making this a general problem for robotic
vision [14,15].

In order to test whether the stable gaits learned above actually help vision, we
conducted two experiments where the Aibo traversed the field while recording
the objects that it saw. The number of objects that were correctly classified
(averaged over four runs) is shown in Table 3. Using the learned stable walk,
the Aibo displayed 39% more true positives and 54% fewer false positives. These
results with statistically significant with p < 0.05.

5 Discussion and Future Work

The experiments detailed in this paper demonstrate that there is a tradeoff
between gait speed and stability. Our version of the fast gait learned according
to Stone et al. [13] achieves a speed of 340mm/s. When the objective function is
changed to include stability information, the fastest walk that is learned has a
speed of 259mm/s. Allowing the robot to make compensatory head motions to
counterbalance for the body movements, reduced the speed marginally.

Even though the stable gait is not as fast as gaits optimized for speed, it could
be used in situations where it is important not to lose sight of objects, for example
if the robot has the ball and is near the opponent’s goal, the stable gait can be used
to ensure that the robot does not lose the ball from its vision and thus has a better
chance at scoring. We leave deciding which gait to use when to future work.
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Table 2. The parameterized starting gait, learned gaits with and without head move-
ments and the learned fast gait. The policy gradient algorithm is able to find gaits that
are considerably more stable than the learned fast gait while only sacrificing a small
amount of speed. The final gait shows a small improvement in gait speed compared to
the starting gait.

Parameter Hand-tuned Gait Stable gait Stable gait Fast gait
with head movements

Front locus height 1.1 1.7 1.7 0.97
Front x position -0.05 0.08 1.17 -0.04
Front y position 0.7 0.76 -0.08 0.3
Rear locus height 1.6 -0.45 1.54 1.61
Rear x position 0 1.54 1.7 -0.11
Rear y position -0.4 0 0.66 -0.51
Locus length 0.4 0.5 0.68 0.57

Front body height 0.9 0.95 0.96 0.76
Rear body height 0.8 0.75 0.64 0.65
Time on ground 0.5 0.62 0.7 0.27
Time to move 45 45.5 43.4 56
through locus

Tilt limit n/a n/a 4.93 n/a
Tilt increment n/a n/a 0.88 n/a

Pan limit n/a n/a 4.81 n/a
Pan increment n/a n/a 1.07 n/a

Gait speed 198 mm/s 259 mm/s 237 mm/s 340 mm/s

Table 3. The ratio of objects correctly and incorrectly classified by a vision algorithm
using a learned fast gait and a learned stable gait. The stable gait leads to significantly
(p < 0.05) better visual classification accuracy.

True Positives False Positives
Fast Gait 0.33 0.052
Stable Gait 0.46 0.028

Another interesting avenue for future work is to examine how different pa-
rameterizations for the gait and the head motion affect learning. Although the
elliptical head motion described in this paper did not significantly increase head
stability, other types of head motions might do better.

6 Conclusion

This paper presented results on using the policy gradient algorithm to learn a
stable, fast gait. Experiments were performed using an objective function that
optimizes for stability in addition to using head compensatory movements. In
both cases, the policy gradient algorithm found a stable gait while sacrificing
only a small amount of speed. Videos of a comparison between gaits optimized
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for speed and gaits optimized for stability are available at:
http://www.cs.utexas.edu/~AustinVilla/?p=research/learned_walk.
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