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a b s t r a c t 

The reciprocal interplay between anxiety and cognition is well documented. Anxiety negatively impacts cognition, while cognitive engagement can down-regulate 
anxiety. The brain mechanisms and dynamics underlying such interplay are not fully understood. To study this question, we experimentally and orthogonally 
manipulated anxiety (using a threat of shock paradigm) and cognition (using methylphenidate; MPH). The effects of these manipulations on the brain and behavior 
were evaluated in 50 healthy participants (25 MPH, 25 placebo), using an n-back working memory fMRI task (with low and high load conditions). Behaviorally, 
improved response accuracy was observed as a main effect of the drug across all conditions. We employed two approaches to understand the neural mechanisms 
underlying MPH-based cognitive enhancement in safe and threat conditions. First, we performed a hypothesis-driven computational analysis using a mathematical 
framework to examine how MPH putatively affects cognitive enhancement in the face of induced anxiety across two levels of cognitive load. Second, we performed 
an exploratory data analysis using Topological Data Analysis (TDA)-based Mapper to examine changes in spatiotemporal brain activity across the entire cortex. 
Both approaches provided converging evidence that MPH facilitated greater differential engagement of neural resources (brain activity) across low and high working 
memory load conditions. Furthermore, load-based differential management of neural resources reflects enhanced efficiency that is most powerful during higher load 
and induced anxiety conditions. Overall, our results provide novel insights regarding brain mechanisms that facilitate cognitive enhancement under MPH and, in 
future research, may be used to help mitigate anxiety-related cognitive underperformance. 
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. Introduction 

Anxiety disorders are highly prevalent in the United States:
9.1% of adults reported having an anxiety disorder in the past
ear ( Website, 2007 ) , and the lifetime prevalence estimate is 31%
 Website, 2007 ). In addition to the severe emotional burden, anxiety in-
erferes with cognition ( Moran, 2016 ) and is associated with cognitive
eficits ( Airaksinen et al., 2005 ; Robinson et al., 2013 ; Eysenck and De-
akshan, 2011 ), further reducing life quality. Paradoxically, performing
 task with a high cognitive load can reduce anxiety ( Balderston et al.,
016 ; Clarke and Johnstone, 2013 ; Patel et al., 2016 ; Vytal et al., 2012 ;
ytal et al., 2013 ; Vytal et al., 2016 ). This latter effect is of particu-

ar interest as a potential strategy to optimize anxiety disorder treat-
ent. Studies have sought to understand the impact of pharmacologi-

al cognitive enhancement (via Methylphenidate, MPH) on the anxiety-
ognition interplay, but the results have been mixed ( Kritchman et al.,
019 ; Sánchez-Pérez et al., 2012 ). Here, we use a computational frame-
ork that includes both hypothesis-driven and exploratory approaches

o advance our understanding of the mechanisms that underlie cogni-
ive enhancement and its impact on state anxiety. It is important to point
ut that our results in state anxiety may not generalize to persons with
athological anxiety. Nonetheless, from a clinical neuroscience perspec-
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ive, this work represents an essential “proof of concept ” step toward
larifying neural mechanisms and laying the initial groundwork for har-
essing this phenomenon for clinical interventions. 

Previous theoretical and empirical work has laid a foundation for
nderstanding the interplay between anxiety and cognitive enhance-
ent. First, anxiety (both state and trait) can reduce the i) efficiency of

he central executive network; ii) ability to inhibit responses; iii) abil-
ty in cognitive switching; and iv) processing efficiency ( Eysenck and
erakshan, 2011 ; Eysenck and Calvo, 1992 ; Eysenck et al., 2007 ;
ishop, 2007 ; Ishai et al., 2004 ). Here, processing efficiency in the con-
ext of working memory is defined by the relationship between accu-
acy and the extent of neural resources mobilized ( Eysenck and Derak-
han, 2011 ). Thus, high efficiency would indicate higher accuracy while
sing fewer resources. Second, work in rats has demonstrated that MPH
nhances \ neuronal activity and reduces latency to correct response,
howing greater efficiency when performing a visual signal detection
ask ( Navarra et al., 2017 ). Finally, neuroimaging during a working
emory task has demonstrated that MPH increased activation within

he frontoparietal network (FPN) while reducing deactivation within
he default mode network (DMN) ( Gaillard et al., 2021 ). This shift in
esources was found only during induced anxiety and thus may reflect
ptimization of the balance between core networks: FPN for regulating
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Fig. 1. Study timeline for each participant. Drug (Methylphenidate) was administered 90 minutes prior to the beginning of the working memory task in the MR 
scanner. 
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ognition ( Zanto and Gazzaley, 2013 ) and DMN for regulating emotion
 Raichle, 2015 ; Broyd et al., 2009 ). 

While the findings mentioned above present important information
egarding how complementary brain networks regulate cognition and
nxiety, two critical gaps remain. First, we need to better understand
ow cognitive load impacts the interplay between induced anxiety and
nhanced cognition. Second, there is a lack of understanding about how
he whole-brain activity patterns adapt across cognitive load conditions
n the presence of induced anxiety or enhanced cognition. The present
tudy gathered data from a randomized trial designed to examine neu-
al mechanisms in response to MPH-related cognitive enhancement and
hreat-of-shock induced anxiety ( Gaillard et al., 2021 ). Anxiety and cog-
itive load were experimentally and orthogonally manipulated using
hreat-of-shock vs. safety and a verbal n-back working memory task at
ow- and high-load, providing a three-factor design, with the factors
eing drug (MPH vs. placebo), cognitive load (1-back vs. 3-back), and
nxiety (safe vs. induced anxiety) ( Fig. 1 ). 

We employed complementary hypothesis-driven and exploratory an-
lytical approaches to further understand how boosting cognition via
PH impacts the anxiety/cognitive interplay. These approaches dif-

er fundamentally from a previous study that used a generalized lin-
ar model (GLM) to examine changes in brain activity associated with
he three-factor design, using the same dataset as here ( Gaillard et al.,
021 ). The hypothesis-driven and exploratory approaches we employed
ere have unique advantages to the previous GLM-based work. Here,
n the first hypothesis-driven computational analysis, we explicitly con-
tructed a mathematical framework to examine how MPH putatively
ffects cognitive enhancement in the face of induced anxiety across two
evels of cognitive load. Hypothesis-driven models typically encapsulate
 theoretical (usually mechanistic) understanding of the underlying phe-
omena and use a comparatively small number of parameters to repre-
ent theoretically meaningful constructs ( Huys et al., 2016 ). Once fitted
o individual data (first-level individual analysis), these parameters can
e compared across groups ( Huys et al., 2013 ). The hypothesis-driven
odels are beneficial for measuring hidden variables and their interac-

ions ( Huys et al., 2013 ), which are otherwise difficult to measure di-
ectly. In our hypothesis-driven modeling approach, we defined explicit
arameters for cognitive load and anxiety ( Fig. 2 ) to further understand
he group differences (MPH vs. placebo) in core network engagement.
dditionally, when compared to a more traditional and equally effective
pproach, such as a mixed-effects model, our computational approach
as putatively greater interpretability and visualization. For example,
he model parameters (load and anxiety) can be used to embed the
ata into lower, more interpretable dimensions. Our prior whole-brain
oxel-wise examination ( Gaillard et al., 2021 ) indicated that MPH in-
reased activation within the (FPN) while reducing deactivation within
he DMN. These results were interpreted as an expansion of overall cog-
itive resources and were only found during the induced anxiety con-
ition. To probe the anxiety/cognitive interaction further, our present,
 t  

2 
ypothesis-driven analysis was limited to the examination of the DMN
nd FPN. However, for completeness, we also report results from other
etworks. 

Our second approach used exploratory data analysis to understand
ow MPH modulates cortical activity patterns at the whole-brain level
cross varying cognitive load and anxiety. Hypothesis-free (or ex-
loratory) methods designed to detect patterns in whole-brain dynamics
ithout an explicit hypothesis or search restriction have been shown to
e essential for understanding the overall dynamic response of the brain
o a given task ( Gonzalez-Castillo et al., 2012 ). How the brain dynam-
cally responds to changing cognitive demands is a critical question in
linical neuroscience because aberrant dynamics have been associated
ith several clinical conditions, including anxiety ( Chen et al., 2020 )
nd ADHD. To examine changes in brain activity patterns without col-
apsing data in space, time, or across participants at the outset, we used
opological Data Analysis (TDA) based Mapper approach ( Saggar et al.,
018 ). Mapper attempts to reveal the underlying shape (or manifold)
f high-dimensional data by embedding it into a low-dimensional space
s a graph. At the same time, the information loss associated with di-
ensionality reduction is partly salvaged by performing a partial clus-

ering step in the original high-dimensional space ( Saggar et al., 2018 ;
eniesse et al., 2019 , Singh et al., 2007 ). We have previously used Map-
er to capture task-evoked transitions in whole-brain activity patterns at
he acquired spatiotemporal resolution, as well as to reveal the rules that
overn transitions in spontaneous brain activity at rest ( Saggar et al.,
018 ; Saggar et al., 2022 ). We used whole-brain activity patterns to con-
truct “shape ” graphs that portray the manifold governing changes in
ctivity patterns. The nodes in these graphs represent whole-brain con-
gurations, while the edges represent similarity across configurations
 Fig. 3 ). We subsequently annotated (or colored) the graphs based on
ask conditions and studied differences in topological properties across
roups. Together, the hypothesis-driven and exploratory analyses hold
he potential for revealing novel, converging evidence to further inform
linical neuroscience. 

. Methods 

The present study uses data collected previously as part of the origi-
al GLM study ( Gaillard et al., 2021 ). Here we only present brief details
bout data acquisition. 

.1. Participants 

Seventy healthy volunteers were recruited from the Washington D.C.
etropolitan area in our parallel-group design, a randomized, double-

lind, placebo-controlled study. Participants were randomly assigned
o receive either a single oral dose of 20 mg methylphenidate (MPH)
r placebo (PLA), according to a randomization schedule established by
he National Institutes of Health (NIH) pharmacy. The placebo capsule
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Fig. 2. Mathematical formulation and scenarios modeled. We operationalized the framework using two parameters: alpha ( 𝛼) and beta ( 𝛽) , where the 𝛼 parameter 
accounted for the load-related changes in activation (i.e., 3-back > 1-back) and the 𝛽 parameter accounted for the anxiety-related changes (i.e., threat > safe). Using 
these two parameters, we modeled three different scenarios for each brain network: load-driven, anxiety-driven, and both load and anxiety-driven. 

Fig. 3. Mapper pipeline is shown pictorially within the dashed border. In the first step, each participant’s high-dimensional neuroimaging data matrix for the 
entire scan session (time frames x cortical parcels) is embedded into a lower dimension set 𝑑 𝑖 , using a non-linear filter function 𝑓 . In the second step, overlapping 
𝑑-dimensional binning is performed to allow for compression and reduce the effects of noisy data points. In the third step, within each bin, partial clustering is 
performed such that data points that are closer to each other in the original high-dimensional space coalesce together in the low dimensional space. This partial 
clustering step allows for recovering information loss incurred due to initial dimensionality reduction. As a final step, to generate a graphical representation of the 
landscape, nodes from different bins are connected if any data points are shared. Once constructed, Mapper graphs can be annotated (colored) using meta-information, 
e.g., task condition, and their graph properties can be examined. 
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ontained an inert substance. MPH and placebo capsules were identical
n color (white) and shape (oblong). They were prepared by the NIH
harmacy. All subjects provided written informed consent approved by
he National Institute of Mental Health (NIMH) Combined Neuroscience
nstitutional Review Board (CNS IRB). Briefly, participants were aged
etween 18 and 50 years, with no current psychiatric disorders or past
ignificant psychiatric conditions (assessed by psychiatric interview us-
ng the Structured Clinical Interview for DSM-IV (SCID) ( First, 2002 ), no
edical conditions (assessed by clinical interview and physical exam),
3 
nd no contraindications to magnetic resonance imaging (MRI). Addi-
ionally, participants were excluded if they had prior treatment with
timulants, intelligence quotient (IQ) lower than 80 as assessed via the
echsler Abbreviated Scale of Intelligence (WASI ( Wechsler, 2012 )),

regnancy or a positive pregnancy test, current or past alcohol/drug
ependence, alcohol/drug abuse in the past year, or positive toxicology
rine screen. Twenty participants were excluded from analyses for the
ollowing reasons: missing task-based fMRI sequences (n = 4), incomplete
ehavioral data (n = 6), and excessive head motion (n = 10). Therefore,
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he final sample consisted of 50 healthy, right-handed adults (26 F; age
ean = 28.2 years, SD = 6.9 years). 

.2. Drug administration 

Participants received a single oral dose of PLA or immediate-release
PH 20 mg (Ritalin, Novartis, Basel, Switzerland), both presented in

dentical-appearing capsules. The MPH dose was based on the lowest
ose reported to be effective on cognitive function ( Mehta et al., 2000 ;
oeller et al., 2014 ; Pauls et al., 2012 ). To maximize MPH plasma lev-

ls during cognitive testing, the drug was administered approximately
0 minutes before the beginning of the experimental working mem-
ry task in the scanner ( Fig. 1 ) ( Mehta et al., 2000 ; Pauls et al., 2012 ;
andam et al., 2014 ). Potential side effects and adverse reactions were
onitored by a clinician using a 34-item inventory to assess physi-

al and mental symptoms (e.g., stomachache, nausea, lightheadedness,
ash, drowsiness, headache). This assessment was performed after the
tudy visit. 

.3. Experimental design 

As detailed previously ( Gaillard et al., 2021 ), the cognitive task
onsisted of the widely-used verbal N-back working memory (WM)
aradigm ( Balderston et al., 2017 ; Braver et al., 1997 ; Ernst et al., 2016 ).
articipants viewed letters displayed sequentially on the screen. For
ach presented letter, participants were instructed to indicate (via but-
on press) if each presented letter was identical to (matched) or different
rom (did not match) the letter presented N letters before. Thirty-three
ercent of trials were ‘match’ trials in which the presented letter was
dentical to the letter presented N letters before. We included two lev-
ls of difficulty: 1- back and 3-back, using a block design. At the be-
inning of each block, participants viewed instructions (8s) regarding
he upcoming difficulty level (1-back or 3-back). The complete task in-
luded two runs, each with eight blocks of 18 letters. Each letter was
resented for 0.5 s at 2 s intervals. The order of the runs was counter-
alanced across participants. Within each run, we also manipulated the
evel of anxiety by including safe blocks and blocks that included the
hreat of unpredictable electrical shocks (threat blocks). Each safe and
hreat block was paired with a level of difficulty (1-back or 3-back).
hus, each run contained two blocks per condition (i.e., 1-back/safe, 3-
ack/safe, 1-back/threat, 3-back/threat). A color surrounded each let-
er; either blue to indicate a safe block or orange to indicate a threat
lock. Participants were explicitly told that they would never receive
n electrical shock during the safe blocks (blue) but that they could re-
eive unpredictable electrical shocks at any time during the threat blocks
orange). Three shocks were delivered per run for a total of six shocks
hroughout the task. 

After each run of the n-back task, we collected subjective anxiety rat-
ngs on a 10-point Likert scale ranging from 1 ( “not at all ”) to 10 ( “ex-
remely ”). Before the working memory task, the shock level intensity
as titrated so that each participant experienced it as “highly uncom-

ortable and aversive, but not painful ” according to a 10-point Likert
cale ranging from 1 ( “not at all aversive, maybe you barely felt it ”) to
0 ( “being highly uncomfortable, but tolerable ”). Shock discomfort was
etrospectively assessed following each run of the N-back task via a rat-
ng of “how unpleasant were the electric shocks ” on an 11-point Likert
cale ranging from 0 (not at all) to 10 (extremely). 

.4. Data acquisition 

Two runs of 225 multi-echo EPI images were collected using a 3T
iemens MAGNETOM Skyra (Erlangen, Germany) fMRI system and a 32-
hannel head coil. Thirty-two interleaved 3mm slices (matrix = 64 mm
 64 mm) were collected parallel to the AC-PC line with an anterior-to-
osterior phase encoding direction (TR = 2000 ms; TEs = 12 ms, 24.48
s, 36.96 ms; flip angle = 70°). Prior to the first functional task-based
4 
un, we acquired two additional sets of 10 multi-echo EPI images us-
ng the same parameters, with one “forward ” series using the same
hase-encoding gradient (anterior-to-posterior phase encoding direc-
ion) and the second “reverse ” series using a reverse phase-encoding
radient with opposite polarity (posterior-to-anterior phase encoding di-
ection). These additional series were used to correct for EPI spatial dis-
ortion related to phase-encoding direction. Additionally, a multi-echo
1- weighted Magnetization-Prepared Rapid Gradient-Echo (MPRAGE)

mage (TR = 2530 ms; TEs = 1.69 ms, 3.55 ms, 5.41 ms, 7.27 ms; flip
ngle = 7°) was acquired. T1-weighted MPRAGE images consisted of in-
erleaved 1 mm axial slices (matrix = 256 mm x 256 mm), which were
ater co-registered to the combined EPI images. 

.5. Data preprocessing 

Results included in this manuscript come from a preprocess-
ng step performed using fMRIPrep 1.5.9 ( Esteban et al., 2019 ;
steban et al., 2018 ) RRID:SCR_016216), which is based on
ipype 1.4.2 ( Gorgolewski et al., 2018 ; Gorgolewski et al., 2011 );
RID:SCR_002502). 

natomical data preprocessing 

The T1-weighted (T1w) image was corrected for intensity non-
niformity (INU) with N4BiasFieldCorrection ( Tustison et al., 2010 ),
istributed with ANTs 2.2.0RRID:SCR_004757) ( Avants et al., 2008 ),
nd used as T1w-reference throughout the workflow. The T1w-reference
as then skull-stripped with a Nipype implementation of the ants
rainExtraction.sh workflow, using OASIS30ANTs as the target tem-
late. Brain tissue segmentation of cerebrospinal fluid (CSF), white
atter (WM), and gray matter (GM) were performed on the brain-

xtracted T1w using fast (FSL 5.0.9, RRID:SCR_002823) ( Zhang et al.,
001 ). Volume-based spatial normalization to two standard spaces
MNI152NLin6Asym, MNI152NLin2009cAsym) was performed through
onlinear registration with antsRegistration (ANTs 2.2.0), using brain-
xtracted versions of both T1w reference and the T1w template. 

unctional data preprocessing 

The following preprocessing was performed for each of the 2 BOLD
uns per subject. First, a reference volume and its skull-stripped version
ere generated using a custom methodology of fMRIPrep . The BOLD

eference was then co-registered to the T1w reference using flirt (FSL
.0.9) ( Jenkinson and Smith, 2001 ) with the boundary-based registra-
ion ( Greve and Fischl, 2009 ) cost function. Co-registration was config-
red with nine degrees of freedom to account for distortions remain-
ng in the BOLD reference. Head-motion parameters with respect to the
OLD reference (transformation matrices and six corresponding rotation
nd translation parameters) are estimated before any spatiotemporal fil-
ering using mcflirt (FSL 5.0.9) ( Jenkinson et al., 2002 ). The BOLD time
eries were resampled onto their original native space by applying the
ransforms to correct for head motion. First, a reference volume and its
kull-stripped version were generated using a custom methodology of
MRIPrep . Confounding time series were calculated based on the prepro-

essed BOLD : framewise displacement (FD) and DVARS. FD and DVARS
re calculated for each functional run, both using their implementations
n Nipype ( Power et al., 2014 ). To further reduce the effect of head
ovement, framewise displacement (FD) was used to create a tempo-

al mask to remove motion-contaminated frames. We used a threshold
f FD = 0.2mm to flag frames as motion contaminated. For each such
otion-contaminated frame, we also flagged a back and two forward

rames as motion contaminated. Following the construction of the tem-
oral mask for censuring, the data were processed with the following
teps: (i) demeaning and detrending, (ii) multiple regression using six
otion parameters, while temporally masked data were ignored dur-

ng beta estimation, (iii) interpolation across temporally masked frames
sing linear estimation of the values at censored frames so that contin-
ous data can be passed through (iv) a band-pass filter (0.009 Hz < f <



M. Saggar, J. Bruno, C. Gaillard et al. NeuroImage 264 (2022) 119686 

0  

f
 

i  

M  

d  

(

2

f

 

h  

c  

t  

𝛼  

3  

c  

B  

p

𝛼

𝛽

 

t  

a  

a  

b  

t  

𝛼  

m  

t  

(  

t  

t  

p

2

 

o  

a  

S  

F  

m  

𝑑  

p  

m  

t  

l  

2  

a  

o  

d  

i  

a  

i  

s  

(  

h  

b  

a  

s  

r
 

s  

p  

w  

r  

(  

s  

a  

v  

r
 

w  

(  

t  

s  

T  

w
 

d  

t  

o

2

 

m  

m  

a  

w  

d  

o  

g
a  

fi

𝑃

i  

T  

a  

0  

d

2

 

r  

r  

a  

r

3

3

 

f  

a  

t  

p  

w  

n  

a  
.08 Hz). The temporally masked (or censored) frames were removed
or further analysis. 

The cortical data was then parcellated into 400 regions us-
ng the Schaefer parcellation, which implements a gradient-weighted
arkov Random Field (gwMRF) model that integrates both local gra-

ient and global similarity to produce higher functional homogeneity
 Schaefer et al., 2018 ). 

.6. Hypothesis-based approach: construction of the mathematical 

ramework 

We created an explicit mathematical framework to perform a
ypothesis-driven examination of the interplay between drug-induced
ognitive enhancement and threat-induced anxiety. We operationalized
he framework using two parameters: alpha ( 𝛼) and beta ( 𝛽) , where the
parameter accounted for the load-related changes in activation (i.e.,

-back > 1-back) and the 𝛽 parameter accounted for the anxiety-related
hanges (i.e., threat > safe). Both parameters were estimated using the
OLD signal strength, 𝑆 𝑆 

{ 𝑆𝑎𝑓𝑒, 𝑇ℎ𝑟𝑒𝑎𝑡 } 
{ 3− 𝑏𝑎𝑐 𝑘, 1− 𝑏𝑎𝑐 𝑘 } , for respective networks 𝑁𝑒𝑡 𝑗 and

articipant 𝑆 𝑖 , as follows, 

𝑁𝑒𝑡 
𝑆 𝑖 

= 

(
𝑆 𝑆 

𝑆𝑎𝑓𝑒 

3− 𝑏𝑎𝑐𝑘 − 𝑆 𝑆 

𝑆𝑎𝑓𝑒 

1− 𝑏𝑎𝑐𝑘 

)
+ 

(
𝑆 𝑆 

𝑇ℎ𝑟𝑒𝑎𝑡 
3− 𝑏𝑎𝑐𝑘 − 𝑆 𝑆 

𝑇ℎ𝑟𝑒𝑎𝑡 
1− 𝑏𝑎𝑐𝑘 

)
2 

𝑁𝑒𝑡 
𝑆 𝑖 

= 

(
𝑆 𝑆 

𝑇ℎ𝑟𝑒𝑎𝑡 
3− 𝑏𝑎𝑐𝑘 − 𝑆 𝑆 

𝑆𝑎𝑓𝑒 

3− 𝑏𝑎𝑐𝑘 

)
+ 

(
𝑆 𝑆 

𝑇ℎ𝑟𝑒𝑎𝑡 
1− 𝑏𝑎𝑐𝑘 − 𝑆 𝑆 

𝑆𝑎𝑓𝑒 

1− 𝑏𝑎𝑐𝑘 

)
2 

Using these two parameters, for each brain network, we modeled
hree scenarios: (A) network is only affected by changes in load and not
nxiety (i.e., 𝛼 > 0 , 𝛽 = 0 ); (B) network is only affected by changes in
nxiety and not load (i.e., 𝛼 = 0 , 𝛽 > 0 ); and (C) network is affected by
oth load and anxiety (i.e., 𝛼 > 0 , 𝛽 > 0 ). We ignored the null condi-
ion, where the network is not affected by either load or anxiety (i.e.,
= 0 , 𝛽 = 0 ). See Fig. 2 for a cartoon depicting the parameters and
odeled scenarios. Based on previous work, this analysis was limited

o the default mode network (DMN) and frontoparietal control network
FPN) ( Gaillard et al., 2021 ). The network definitions were based on
he 7-network Yeo parcellation ( Yeo et al., 2011 ), which was applied to
he data that had been previously parcellated according to the Schaefer
arcellation ( Schaefer et al., 2018 ). 

.7. Hypothesis-free approach: TDA-based Mapper pipeline 

The TDA ( Tenenbaum et al., 2000 ) based Mapper pipeline was run
n each participant. Complete details of the Mapper analysis pipeline
re presented elsewhere ( Saggar et al., 2018 , Geniesse et al., 2019 ;
aggar et al., 2022 ). The Mapper pipeline consists of four main steps.
irst, Mapper embeds the high-dimensional input data into a lower di-
ension 𝑑, using a filter function 𝑓 . For ease of visualization, we chose
= 2. The choice of filter function dictates which data properties are to be
reserved in the lower dimensional space. Several studies using animal
odels and computational research suggest that inter-regional interac-

ions in the brain are multivariate and nonlinear. Thus, we used a non-
inear filter function based on neighborhood embedding ( Saggar et al.,
018 ). We implemented the filter function 𝑓 as a nonlinear dimension-
lity reduction step, where the geodesic distances were computed in the
riginal high-dimensional space and were later embedded into a low 𝑑-
imensional space using classical multidimensional scaling (MDS). Us-
ng geodesic distances, instead of Euclidean (or other similar metrics),
llow for better preservation of the local structure evident in the orig-
nal high-dimensional space after projection into a lower dimensional
pace. Similar functions have been used previously in manifold learning
 Tenenbaum et al., 2000 ). Recently, we showed the efficacy of neighbor-
ood embedding (with 𝑘 neighbors) in capturing the landscape of whole-
rain configurations extracted from a continuous multitask paradigm
nd task-evoked data from the Human Connectome Project (HCP). A
5 
imilar filter function is used in our more recent Mapper application to
esting state fMRI data as well ( Saggar et al., 2022 ). 

The second step of Mapper creates overlapping bins in n-dimensional
pace to allow for compression, thereby reducing the effect of noisy data
oints. Based on previous work using fMRI data ( Saggar et al., 2018 ),
e divided the lower-dimensional space into overlapping bins using a

esolution parameter ( 𝑟 ; #bins) of 18. The percent overlap between bins
 𝑔) was kept at 70%. Mapper-generated graphs have been previously
hown to be stable for a large variation across parameters for resolution
nd percent overlap ( Saggar et al., 2018 ; Saggar et al., 2022 ). Here, we
aried 𝑟 and 𝑔 across a range of values to examine the robustness of the
esults (see Section 2.8 ). 

The third step of Mapper includes partial clustering within each bin,
here the original high-dimensional information is used for coalescing

or separating) data points into nodes in the low-dimensional space. Par-
ial clustering allows recovering the loss of information due to dimen-
ional reduction in step one ( Geniesse et al., 2019 ; Lum et al., 2013 ).
his partial clustering step can (and often does) create multiple nodes
ithin a bin. 

Lastly, to generate a graphical representation of the “shape ” of input
ata, nodes from different bins are connected if any data points lie in
he overlap between bins. See Fig. 3 below for a pictorial representation
f the Mapper pipeline. 

.8. Network measures 

The Mapper-generated graphs can be annotated (or colored) using
eta-information not used to construct the graphs. Some examples of
eta-measures are condition labels and task performance. Here, we

nnotated these graphs using task condition labels to assess whether
hole-brain activation patterns are similar or different across task con-
itions. To quantify the extent of divergence (high condition specificity)
r overlap (low condition specificity) across task conditions, we used a
raph theoretical measurement of the participation coefficient ( Guimerà
nd Nunes Amaral, 2005 ). The participation coefficient of a node is de-
ned as: 

 𝑖 = 1 − 

𝑁 𝑀 ∑
𝑠 =1 

( 

𝜅𝑖𝑠 

𝑘 𝑖 

) 2 

Where 𝜅𝑖𝑠 is the number of links of node 𝑖 to nodes in community 𝑠 , 𝑘 𝑖 
s the total degree of node 𝑖 and 𝑁 𝑀 

is the total number of communities.
he 𝑃 𝑖 of a node 𝑖 is close to 1 if its links are uniformly distributed among
ll communities of the graph (and hence overlapping), and it is close to
 if its links are primarily within its own community (and therefore
iverging). 

.9. Effect of Mapper parameters 

A parameter perturbation analysis was run to examine whether the
esults were stable across different parameter choices. Two Mapper pa-
ameters, number bins ( 𝑟 ) and %overlap (or gain 𝑔), were varied across
 range to show that the observed results using 𝑟 = 18 and 𝑔= 70 were
obust across other parameter values ( Fig. S1 ). 

. Results 

.1. Behavioral results 

Using a linear mixed-effects model, we observed a significant ef-
ect of MPH on working memory performance while controlling for
ge and sex, such that participants in the MPH group outperformed
hose in the placebo group in terms of accuracy ( 𝛽 = 0.05, t(323) = 1.87,
 (one-tailed) = 0.03; we hypothesized that participants in the MPH group
ould show enhanced performance relative to the PLA thus 1-tailed sig-
ificance was tested). We used a similar mixed effects model to examine
nxiety ratings and observed a significant main effect of the condition
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higher anxiety for threat vs. safety (b = 3.64, t(350) = 8.85, p < 0.001),
hereby validating our induced anxiety condition. Mean shock ratings
or each run and group (MPH vs. placebo) were above 7.88 (out of 10)
nd did not differ significantly between groups for either run one or
un two (p’s > 0.10). A more detailed analysis of behavioral results was
reviously presented ( Gaillard et al., 2021 ). 

.2. Hypothesis-driven examination using explicit parameters for load- and 

nxiety-related changes in activation 

Based on our previous work ( Gaillard et al., 2021 ), we limited the
resent hypothesis-driven examination of load and anxiety parameters
o the default mode (DMN) and frontoparietal (FPN) networks. After es-
imating load (alpha) and anxiety (beta) parameters for each network,
 repeated-measures ANOVA with estimated parameters and networks
s within-subject factors and the group as a between-subject factor was
un while covarying for age and sex. A significant group x network x
arameter interaction was found (F(1,46) = 5.335, p = 0.025). Post-hoc
airwise comparisons (adjusted for multiple comparisons using Bonfer-
oni correction) revealed significantly higher values of the load parame-
er in the MPH group (as compared to PLA) for both networks (p = 0.043
or DMN and p = 0.009 for FPN). No significant group differences were
vident for the anxiety parameter for either network. These results fit
ith model A ( Fig. 2 ). Fig. 4 shows these results and visualizes each
etwork’s average BOLD signal strength across the two groups and four
ask blocks. 

For completeness and to inform future studies, group differences in
he load and anxiety parameters of the other five networks (from the Yeo
etwork parcellation ( Yeo et al., 2011 )) were also examined. We used
nivariate analysis of variance to compare group differences while con-
rolling for age and sex. All five networks showed significant group dif-
erences for the load (alpha) parameter (Visual network: F(1,46) = 4.42,
 = 0.041; Somatomotor network: F(1,46) = 6.79, p = 0.012; Dorsal At-
ention network: F(1,46) = 5.07, p = 0.029; Ventral attention network:
(1,46) = 7.68, p = 0.008; Limbic network: F(1,46) = 6.19, p = 0.017), while
o group differences were observed for the anxiety (beta) parameter.
hus, suggesting a global shift in activation for higher load conditions
as facilitated by MPH. 

.3. Hypothesis-free examination of induced spatiotemporal changes across

he cortex 

We used a TDA-based Mapper approach to assess spatiotemporal
hanges in the entire cortex under different task conditions for the
ypothesis-free examination. Mapper graphs were separately generated
or each individual using their total task scan (i.e., data combined across
oth runs). Mapper-generated graphs were later colored (annotated) by
oad (3-back vs 1-back) and anxiety (safety vs threat) information. See
ig. 5 for Mapper-generated graphs of representative individuals from
oth groups. Supplementary Figures S2-S5 provide Mapper-generated
raphs for all individuals, annotated by load and anxiety separately. 

To estimate the amount of similarity (or divergence) between differ-
nt degrees of load and anxiety, Mapper-generated graphs colored by
oad and anxiety were analyzed using the graph theoretical metric of
articipation Coefficient (PC) ( Guimerà and Nunes Amaral, 2005 ). PC
alues were then estimated for each graph node. Nodes with higher val-
es of PC indicate higher similarity between different degrees of load (or
nxiety), and lower values indicate higher divergence between different
egrees of load (or anxiety). A repeated-measures ANOVA with a within-
ubject factor of annotation (load vs. anxiety) and between-subject fac-
or of group was run, with age and sex as covariates. A significant group
 annotation interaction was found F(1,46) = 10.154, p = 0.003). Post-hoc
airwise comparisons showed the effect of load to be significantly dif-
erent across the two groups (p = 0.018; Bonferroni corrected), such that
ignificantly lower values of PC were observed for the load-based an-
otation in the MPH group (as compared with the PLA group). These
6 
esults suggest higher divergence (or lower similarity) between spatial
ctivity profiles based on the load in the MPH group. No such group
ifferences were found for the anxiety-based annotation of the Map-
er graphs. The parameter perturbation analysis showed similar results
cross different Mapper parameter choices ( Fig. S1 ). 

Because the participation coefficient implicitly assumes that commu-
ities are equally sized, we examined differences in community size and
ntramodular connectivity across communities and confirmed that there
re no differences between conditions for load and anxiety (ps > 0.05;
ig. S6 ). Hence, our use of non-normalized PC estimation is justified. 

Next, we examined whether individual differences in load-related di-
ergence (i.e., lower PC value) were associated with behavioral perfor-
ance on the working memory task using Spearman’s rank correlation
hile controlling for age and sex. Data were combined across groups to
ptimize statistical power. Correlation results indicated that the load-
elated divergence of Mapper graphs was not only associated with better
ehavioral performance during higher load (rho (46) = -.31, p = .033) but
lso during induced anxiety (threat; rho (46) = -.32, p = .025) conditions
 Fig. 5 D ). 

. Discussion 

Using two complementary analytical approaches, we advance our
nderstanding of how cognitive enhancement (under MPH) alters brain
ctivity patterns in the face of induced anxiety and increased cognitive
oad. In the first approach, we develop an explicit mathematical frame-
ork to parametrically investigate the role of two core networks (DMN
nd FPN) implicated in the anxiety-cognition interplay. In the second
pproach, we use a hypothesis-free TDA-based analysis to examine the
hole-brain dynamical response to our paradigm. Both approaches yield

onverging evidence that cognitive enhancement under MPH facilitates
reater differential engagement of neural resources (activation) across
onditions of low and high working memory load. This load-based dif-
erential management of neural resources facilitated better task perfor-
ance during both higher load and higher anxiety conditions. Overall,

ur results provide novel insight into how cognitive enhancement under
PH putatively diminishes anxiety. Such information represents a criti-

al preliminary step toward informing neurobiologically targeted treat-
ent approaches employing cognitive enhancement to reduce anxiety

nd, in turn, reduce anxiety-related cognitive deficits. 
Our findings include critical neurobiological and behavioral pro-

esses underlying the complex, reciprocal relationship between anx-
ety and cognition. Previous neuroimaging work has indicated that
oth DMN, which subserves self-referential and emotional processes
 Raichle, 2015 ; Broyd et al., 2009 ), and FPN, which subserves ex-
cutive processes ( Zanto and Gazzaley, 2013 ), demonstrate aberrant
onnectivity in association with anxiety disorders ( Xiong et al., 2020 ;
outinho et al., 2016 ; Xu et al., 2019 ) and with high trait anxiety
 Sylvester et al., 2012 ). Furthermore, emotion regulation is supported
y the greater efficiency of both FPN and DMN ( Pan et al., 2018 ). Re-
ent neuroimaging work, using the same dataset as here, has shown
hat cognitive enhancement (via MPH) was associated with increased
ngagement of the FPN as well as reduced deactivation of the DMN dur-
ng high anxiety and high WM load conditions ( Gaillard et al., 2021 ).
his recent finding suggests that expansion of cognitive resources un-
er MPH provides an optimal balance between recruitment of cogni-
ive processing and emotion regulation resources. Using different an-
lytical approaches, we provide complementary evidence suggesting
he recruitment of both core networks (DMN and FPN) under MPH.
or completeness, we also examined other five networks from the Yeo
arcellation and observed a similar response of MPH across networks.
hus, our present findings indicate that a global shift in activation dur-

ng difficult (higher cognitive load) conditions was facilitated by the
PH. 

Additionally, we further specify the nature of the network modula-
ion under MPH according to task difficulty. Specifically, we found that
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Fig. 4. Results of the explicit parameters using default mode network (DMN) and frontoparietal network (FPN). [A] The parameter for the load (alpha) was observed 
to be significantly higher for the MPH group (than PLA group) for both frontoparietal and default mode networks. No significant group difference was observed for 
the anxiety parameter (beta). [B-C] Shows FPN and DMN networks activation for each of the four conditions across the two groups. 
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he parameter for the load (model A; Fig 2 ) was significantly higher
n the MPH group relative to the PLA group for all networks. Thus,
ur findings indicate that cognitive enhancement (via MPH) results in a
ifferential engagement in response to a higher working memory load
lobally. Interestingly, no similar group differences were observed for
he anxiety parameter, i.e., cognitive enhancement (via MPH) did not
esult in differential engagement in response to higher anxiety, suggest-
ng a lack of direct interaction between MPH and anxiety processing in
ur cohort. 
7 
Our hypothesis-free TDA results provide converging evidence for dif-
erential neural engagement in response to higher working memory load
nder MPH and extend these findings in two important ways. First, the
DA-based Mapper approach is a whole-brain approach and thus pro-
ides evidence of whole-brain dynamical response under MPH in addi-
ion to the aforementioned network-specific results. Second, our Mapper
pproach reveals how brain activity patterns differ (i.e., segregate) or
ollapse (i.e., integrate) at the level of individual timeframes (TRs). We
sed the participation coefficient ( Guimerà and Nunes Amaral, 2005 )
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Fig. 5. Hypothesis-free examination of induced spatiotemporal changes across the cortex using the topological data analysis (TDA)-based Mapper approach. [A-B] 
Showing Mapper graphs for two representative participants (methylphenidate [MPH] on the left and placebo [PLA] on the right), annotated by load condition. In 
the case of the MPH group participant, higher separation between load conditions was observed. To better illustrate the separation between 3-back and 1-back 
conditions, we added background clusters (yellow and green) to the graph from the MPH participant. [C] The participation coefficient (PC) for load-based annotation 
was significantly different between the two groups. [D] Relating individual differences in participation coefficient of Mapper graphs (extracted from load-based 
annotation) with behavioral performance on the task, suggesting lower PC values were associated with better performance under both high load (rho (46) = -.31, 
p = .033) and induced anxiety (rho (46) = -.32, p = .025) conditions. 
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PC), an established graph-theoretical metric, to quantify the degree of
egregation (vs. integration) in brain activity patterns across task fac-
ors. Using WM load as the task factor revealed lower PC (i.e., higher seg-
egation across WM load) for the MPH group relative to the PLA group.
his suggests that cognitive enhancement under MPH was facilitated
y differential engagement of neural resources under low and high-load
M conditions. Thus, in line with our network-based approach, the TDA

esults also suggest load-based differential engagement at the whole-
rain level. No such group differences were found for the PC when the
apper-generated graphs were annotated (colored) by anxiety. Further-
ore, WM load-based differential engagement was associated with bet-

er behavioral performance during higher load and anxiety conditions.
his suggests that by modulating the level of neural engagement, MPH
utatively facilitates higher cognitive efficiency during challenging con-
itions based on required cognitive demand. 

Overall, competition for cognitive resources can explain the interac-
ions between anxiety and cognition ( King and Schaefer, 2011 ). When
emands for one process increase, the resources available for other pro-
esses decrease. The present study was built upon foundational work
emonstrating that enhancing cognition with exercise ( Lago et al., 2019 )
r with MPH ( Ernst et al., 2016 ) results in increased cognitive capac-
8 
ty facilitating enhanced cognitive and threat processing. Furthermore,
revious work suggested that improving working memory performance
hrough training (practice on high and low load working memory condi-
ions) led to increased anxiety which, as the authors argued, may be due
o the availability of increased resources to process threats ( Grillon et al.,
020 ). Here, we extend previous work by providing converging evi-
ence that cognitive enhancement associated with MPH is likely facili-
ated by load-appropriate (and hence efficient) engagement of neural re-
ources. According to the neural efficiency hypothesis, individuals with
igher intelligence demonstrate more efficient (i.e. lower) brain acti-
ation while performing cognitive tasks ( Haier et al., 1988 ). Further,
MRI brain activation levels also adapt to the particular task demands
 Dunst et al., 2014 ). Thus, one plausible interpretation of our present
esults is that MPH enhances the neural efficiency phenomenon by fa-
ilitating increased activation during increased task difficulty (high WM
oad). A potential mechanism by which MPH may enhance neural effi-
iency is via MPH’s action to increase dopaminergic neurotransmission
hich increases the signal-to-noise ratio in neural networks thereby re-
ucing neural noise ( Pertermann et al., 2019 ). However, it is also impor-
ant to point out threat evidence for the neural efficiency hypothesis is
ot found in all studies and important factors moderate the relationship
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etween brain activation and intelligence (e.g. sex, task type, task com-
lexity, brain area investigated and level of training, see ( Neubauer and
ink, 2009 ) for a review of these issues). Therefore, our aforementioned
nterpretation should be considered with caution as assessment of these
mportant moderators and their interactions with our variables of inter-
st was outside the scope of the present study. 

In the future, similar TDA-based analytical approaches can be mea-
ured and tracked over time and, as such, may represent a useful metric
or informing and tracking response to interventions. Effective treatment
f cognitive interference associated with anxiety disorders is an area of
reat clinical need. Our study was focused on state anxiety in healthy
ndividuals and thus cannot be generalized to patients with anxiety dis-
rders. The 20mg dose of MPH chosen for this study, while based on
revious research ( Ernst et al., 2016 ), was relatively low, yet it resulted
n significant neural divergence. This speaks to the sensitivity of our
ypothesis-driven and hypothesis-free approaches. However, examining
he effects of higher dose MPH will be informative for understanding the
hole dynamics of the anxiety/cognition interplay. 

In summary, we provide novel mechanistic evidence of load-
ppropriate engagement of neural resources under MPH. Such efficient
oad-based engagement was associated with improved behavioral per-
ormance in the WM task during high load and anxiety conditions. We
ope these results can provide a novel avenue for using computational
pproaches in improving mechanistic understandings of pharmacologi-
al interventions. 
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