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Meditation training has been shown to enhance attention and improve emotion regulation. However, the brain
processes associatedwith such training are poorly understood and a computationalmodeling framework is lack-
ing. Modeling approaches that can realistically simulate neurophysiological data while conforming to basic ana-
tomical and physiological constraints can provide a unique opportunity to generate concrete and testable
hypotheses about the mechanisms supporting complex cognitive tasks such as meditation. Here we applied
themean-field computational modeling approach using the scalp-recorded electroencephalogram (EEG) collect-
ed at three assessment points from meditating participants during two separate 3-month-long shamatha medi-
tation retreats. We modeled cortical, corticothalamic, and intrathalamic interactions to generate a simulation of
EEG signals recorded across the scalp. We also present two novel extensions to the mean-field approach that
allow for: (a) non-parametric analysis of changes in model parameter values across all channels and assess-
ments; and (b) examination of variation in modeled thalamic reticular nucleus (TRN) connectivity over the re-
treat period. After successfully fitting whole-brain EEG data across three assessment points within each retreat,
two model parameters were found to replicably change across both meditation retreats. First, after training,
we observed an increased temporal delay between modeled cortical and thalamic cells. This increase provides
a putative neural mechanism for a previously observed reduction in individual alpha frequency in these same
participants. Second, we found decreased inhibitory connection strength between the TRN and secondary relay
nuclei (SRN) of the modeled thalamus after training. This reduction in inhibitory strength was found to be asso-
ciatedwith increased dynamical stability of themodel. Altogether, this paper presents thefirst computational ap-
proach, taking core aspects of physiology and anatomy into account, to formallymodel brain processes associated
with intensive meditation training. The observed changes in model parameters inform theoretical accounts of
attention training through meditation, and may motivate future study on the use of meditation in a variety of
clinical populations.

© 2015 Elsevier Inc. All rights reserved.
Introduction

In traditional Buddhist thought, meditation refers to a process of
familiarization (Tibetan gom) with or cultivation (Sanskrit bhavana) of
particular mental states and cognitive capacities through the repeated
observation, investigation, and recollection of mental processes and
events (Langri, 2009;Wallace, 2005). Meditation is thus conceptualized
, Department of Psychiatry and
A.
as a form ofmental training in which the practitioner engages in mental
exercises in order to develop beneficial psychological, cognitive, and
motivational traits (Walsh and Shapiro, 2006; Lutz et al., 2008), and at-
tempts to gain deeper insight into their mental life. This conceptualiza-
tion of meditation as a developmental process shares considerable
theoretical overlap with cognitive and neuroscientific theories of learn-
ing, development, and neuroplasticity (Slagter et al., 2011). Contempo-
rary psychological accounts of meditation have therefore argued that it
is possible to understand and characterize the neurocognitive frame-
work associated with meditation in terms of established features of at-
tention and cognitive control (e.g., Hölzel et al., 2011; Lutz et al., 2008).
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Among the practices utilizedwithin various Buddhist traditions are a
class of attention-regulatory techniques designed to promote attention-
al stability and vividness, traditionally termed shamatha (lit. calm abid-
ing; Wallace, 2005, 2006). During shamatha practice, practitioners
voluntarily direct and maintain attention on an external or internal
object or domain of focus (e.g., sensations of the breath), monitoring if
attention is on the intended target, and gently reorienting attention
whenever it strays or becomes lax. A number of studies have shown
that trainingwith shamatha and related focused-attention (FA)medita-
tion techniques is associated with enhanced cognitive control and im-
proved attention regulation. For example, studies of intensive training
in suchmeditation techniques have demonstrated improvements in at-
tentional stability (Lutz et al., 2009; MacLean et al., 2010) and alerting
(Jha et al., 2007), sustained response inhibition (Sahdra et al., 2011), ef-
ficiency in informationprocessing (Slagter et al., 2007; vanVugt and Jha,
2011), and perceptual discrimination (MacLean et al., 2010).Moore and
colleagues reported that regular but non-intensive practice of FA-style
meditation over 16 weeks can lead to enhanced attentional processing
and increased efficiency of resource allocation during object recognition
processes (Moore et al., 2012). Overall, these studies have shown that
regular practice of shamatha and related FAmeditation may lead to im-
provements in behavioral measures of attention and cognitive control.

Despite the sizeable amount of attention-related research on medi-
tation training, the brain processes associatedwith these behavioral im-
provements are notwell characterized. One avenue for investigating the
neural correlates of meditation has been to examine the patterns of
brain activation that co-occur during the practice of specified medita-
tion techniques. These studies have typically relied uponmeasuring cor-
tical oscillatory activity (scalp-recorded EEG) and have more recently
employed other neuroimaging modalities such as functional Magnetic
Resonance Imaging (Cahn and Polich, 2006). Although a number of
studies have suggested that experienced meditation practitioners
show greater recruitment of attention-related brain networks during
practice of FA meditation (Brefczynski-Lewis et al., 2007; Hasenkamp
and Barsalou, 2012; Hasenkamp et al., 2012; Saggar et al., 2012), there
is no consensus on the extent or specificity of neural activity associated
with such practice. Investigation of the neural processes recruited
during FA practice is complicated by the difficulty of experimentally
controlling participants' unobservable mental states, which cannot be
corroborated conclusively through external measurement. Thus, much
of this research relies on inferences regarding the engagement of specif-
ic cognitive processes drawn solely from observed neural activity. Fur-
thermore, relatively little is known about how intensive training alters
state-specific neural activity. Characterizing how meditation state-
specific neural activity may be affected through training (e.g., Saggar
et al., 2012)will aid our understanding of how the repeated recruitment
of large-scale brain networks duringmeditation practicemay be related
to the development of enduring psychological traits.

In our previous work (Saggar et al., 2012), we examined patterns of
scalp-recorded oscillatory activity (EEG) while participants engaged in
6 min of mindfulness of breathing practice in which they focused on
the tactile sensations of the breath. Training and wait-list control
group participants each underwent a three-month intensive shamatha
meditation retreat. Ongoing cortical oscillatory activity was assessed
using spectral analysis of dense-array EEG at three assessment points
(pre-, mid-, and post-retreat) across two separate training periods.
Two robust changes in cortical activity were replicated across the train-
ing interventions: 1) significant reductions in beta-band power, bilater-
ally over anterior–central and posterior scalp regions, and 2) reductions
in state-related global individual alpha frequency (IAF; Klimesch, 1999).
Training-related changes in beta-band power were interpreted as indi-
cating increased cortical activation of sensory- and attention-related
brain networks recruited during voluntary focus on the tactile sensa-
tions of the breath. In the context of these changes in spectral power, re-
ductions in IAF were interpreted as suggesting that participants'
capacity to focus attention on the breath was less effortful following
training. These findings provide evidence of longitudinal changes in
meditation state-related brain oscillatory activity during mindfulness
of breathing that may potentially support long-term improvements in
attention regulation.

In studies such as Saggar et al., 2012, the ability to draw clear conclu-
sions about psychological processes from presumed meditation state-
related brain activity is limited by a number of methodological and
inferential constraints. During meditation practice, meditation practi-
tioners typically engage in covert or internalized tasks for which there
are no obvious external markers of performance or compliance. Al-
though researchers often provide specific instructions to practitioners
to engage in particular meditation techniques, there is no direct way
to confirm that participants are following instructions similarly. Brain
activity observed during meditation may also reflect cognitive states
not directly related to implementing the techniques themselves
(e.g., mind wandering). Inferences regarding the role of observed
brain activity as reflecting state-specific cognitive processes must rely
on references to patterns of activity identified in other task domains. Po-
tential avenues for resolving these ambiguities include pairing induced
state-related brain activity with practitioners' first-person introspective
reports (i.e., neurophenomenology; Desbordes andNegi, 2013; Lutz and
Thompson, 2003), and correlational approaches that relate measures of
meditation state-related brain activity to behavioral performance on
tasks presumed to share cognitive mechanisms with specified tech-
niques. Another approach involves utilizing computational models of
state-related activity to better characterize presumed mechanisms of
neural activation from the recorded EEG itself. Such models can be
used to generate targeted hypotheses regarding the cortico-cortical
and subcortico-cortical dynamics associated with practice and training
(Kerr et al., 2013). Here, we utilize the later approach of computational
modeling to formally characterize longitudinal changes in cortical activ-
ity associated with intensive focused-attention meditation training
(Saggar et al., 2012). Computationalmodels provide amathematical ap-
proach that allows for simulating complex phenomena for which
closed-form analytical solutions do not exist and for generating con-
crete novel hypotheses for future research.

Effective computational models are based on realistic biophysical
and anatomical constraints involving conceptual understanding of the
processes involved. The cognitive model of attention proposed by
Posner and Peterson (1990) articulates a number of attentional compo-
nent processes that are relevant to conceptions of shamatha and related
FAmeditation practice, such as attentional alerting, orienting, andmon-
itoring. Neuroimaging studies investigating this cognitive model
(Corbetta and Shulman, 2002; Fan et al., 2005) have highlighted the
role of fronto-parietal cortical networks and thalamic sub-cortical
areas in attention regulation (Kastner et al., 2012) and cognitive control
(Dosenbach et al., 2008). Additionally, these findings have been corrob-
orated by neuroimaging studies of large-scale cognitive-control net-
works (Bressler and Menon, 2010; Menon, 2011). Based on these
studies, we propose tomodel the neurophysiological mechanisms asso-
ciated with cognitive processes engaged during FAmeditation by incor-
porating cortical and thalamic components involved in attention
regulation and by investigating the utility of a biophysical model of
corticothalamocortical loops to account for observed longitudinal
changes in scalp-recorded EEG.

There are a wide range of approaches available for the computation-
al modeling of EEG data, including purely phenomenological ap-
proaches (Isaksson et al., 1981; Wright et al., 1990), mean-field
modeling (i.e., Freeman, 1972, 1987; Jirsa et al., 2010; Lopes da Silva
et al., 1974; Nunez, 1974a,b; Robinson et al., 2001b; Wilson and
Cowan, 1972, 1973), and detailed neural networks (Lagerlund and
Sharbrough, 1989; Lumer et al., 1997; Reimann et al., 2013; Traub
et al., 1997; Wilson and Bower, 1992). Whereas phenomenological ap-
proaches simulate data without incorporating anatomical information,
mean-fieldmodeling allows for simulation at the level of neural popula-
tions while incorporating some anatomical information. Discounting
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volume conduction, each EEG sensor (~5 mm in diameter) represents
the aggregate synaptic activity of a population of hundreds of thousands
of neurons (Pizzagalli, 2007). The complexities of population dynamics,
resulting from the complexity of cortical micro-circuitry, creates a chal-
lenge for detailed modeling. However, an approximation of mean pop-
ulation activity may be modeled for each sensor using mean-field
modeling, while keeping intact desired assumptions regarding overall
corticothalamic anatomical and physiological constraints.

We used the Robinson et al. (2001b) Mean-Field Model (henceforth
referred to as R-MFM), in which EEG spectra at the scalp are simulated
using postulated corticocortical, corticothalamic, and intrathalamic
loops. The R-MFM was chosen because scalp-recorded EEG data are
generated primarily by the summation of excitatory and inhibitory
post-synaptic potentials in the pyramidal cells of the cortex
(Pizzagalli, 2007; Speckmann and Altrup, 1993), and because oscilla-
tions in subcortical areas, especially the thalamus, and oscillations due
to corticothalamocortical interactions are considered to be major con-
tributors to the generation of cortical alpha and beta rhythms
(Robinson et al., 2002; Steriade, 2005; Steriade et al., 1993). In humans,
studies combining EEG measures with positron emission tomography
and fMRI have provided direct evidence for a relation between glucose
metabolic activity in the thalamus and scalp-recorded EEG alpha
power (Goldman et al., 2002; Larson et al., 1998; Schreckenberger
et al., 2004). In a recent review, using a neural networkmodel of a single
cortical column in the primary somatosensory cortex (SI) (Jones et al.,
2007; Jones, 2009), Kerr et al. (2013) hypothesized that interactions be-
tween thalamic regions and SI may facilitate attentional modulation of
alpha rhythms (7–14 Hz) during FA meditation practice. Further, re-
search on long-term meditators has also invoked the role of thalamic
nuclei (esp. the reticular nucleus) in regulating and sustaining attention
on the object of meditative focus (Austin, 2013; Guglietti et al., 2012;
Newberg and Iversen, 2003). Thus, by modeling interactions between
corticocortical, corticothalamic and intrathalamic cells in meditation-
state related EEG data, our computational approach can provide a
framework for generating targetedhypotheses,which canmotivate em-
pirical verification usingmultimodal non-invasive approaches in future
research.

In the present investigation,we first used R-MFM to simulatewhole-
brain EEG data obtained while participants engaged in 6 min of breath-
focused FA meditation practice. Next, using standard model-fitting
procedures, the R-MFM parameters were refined for each participant
in order to fit the simulated data to the observed EEG spectra collected
at three assessment points over the 3-month training period. Finally,
using inverse computational modeling, we explored longitudinal
changes in model parameters to examine the effects of intensive
meditation training on changes in corticocortical, corticothalamic, and
intrathalamic parameters.

We also present two novel extensions to the R-MFM. First, using
nonparametric statistical testing, we analyze longitudinal changes in
model parameters across the whole-brain, rather than for single chan-
nels, as was done in previous applications of R-MFM; (Robinson et al.,
2003a). This approach allows for analysis of changes in whole-brain
EEG topography associated with intensive meditation training. Second,
we explore how simulated connectivity patterns in the TRNmay change
over time. This extended model will henceforth be referred to as ER-
MFM. Although these proposed extensions were developed to analyze
meditation data, they can be applied to model longitudinal changes in
corticothalamic architecture and dynamics within any EEG or MEG
dataset.

Methods

Study design

Two three-month long residential meditation retreats were held
at a scenic meditation center (Shambhala Mountain Center) in Red
Feather Lakes, CO. Participants lived and practiced meditation onsite
for the duration of training. Two separate groups of 30 participants
were tested during the initial 3-month retreat: an in-residence re-
treat group undergoing training (RG1) and a matched wait-list
control group (CG) that was flown to the retreat center for each
assessment. The CG did not receive training during this period, but
was tested using procedures identical to RG1. In the second retreat,
the same CG participants underwent training that was formally iden-
tical to the training of RG1 participants during the initial retreat.
Thus, we analyzed three datasets from two groups of participants:
RG1 and CG during the initial retreat, and CG as training participants
during the second retreat (subsequently referred to as RG2). The
institutional review board of the University of California, Davis, ap-
proved all study procedures.
Participants

Data from 22 individuals in each participant group (initial retreat
andwait-list control)were included in all analyses. Data for the remain-
ing participants were removed due to poor signal quality and technical
issues (see Saggar et al, 2012). Initial retreat andwait-list control partic-
ipants included in the final sample did not differ (all ps N .05) in age
(RG1:M=49.5 years, SD=13.5, CG:M=44.2 years, SD=15.8), gen-
der (RG1: 12 female, CG: 11 female), or estimated lifetime meditation
experience (RG1: M = 2855.6 h, SD = 2994.1, CG: M = 2272.7 h,
SD= 2326.3).
Training

Dr. B. Alan Wallace, an established Buddhist teacher, contem-
plative, and scholar, served as the meditation instructor during
both retreats. Meditation training was comprised of two general
classes of techniques from the Buddhist contemplative tradition:
shamatha techniques involving directing and sustaining attention
on a chosen object and ancillary techniques involving the genera-
tion of benevolent aspirations for the well-being of oneself and
others (Sahdra et al., 2011; Wallace, 2006). Shamatha techniques
included mindfulness of breathing, in which attention is directed to-
ward the breath; observing mental events, in which attention is di-
rected toward the whole field of mental experience (e.g.,
thoughts, images, sensations); and observing the nature of con-
sciousness, in which attention rests in the clear and cognizant expe-
rience of being aware. These shamatha practices are defined as
such because they each aim to cultivate stable, clear, and effortless,
single-pointed concentration (Wallace, 2006). Although these prac-
tices incorporate features commonly ascribed to focused-attention
techniques, they may additionally share features of other classes
of techniques, such as open-monitoring (OM; Lutz et al., 2008).
Beneficial aspirations included practices that aim to cultivate lov-
ing-kindness, compassion, empathic joy, and equanimity (Wallace,
2006). Participants in RG1 (N = 22) spent an average of 5.7 h
per day (SD = 1.5) practicing shamatha techniques (mindfulness
of breathing M = 2.10 h, SD = 2.16; observing mental events
M = 1.74 h, SD = 2.22; and observing nature of consciousness
M = 1.86 h, SD = 2.11), and participants in RG2 (N = 22) spent
an average of 5.4 h per day (SD = 1.5) on shamatha techniques
(mindfulness of breathing M = 3.16 h, SD = 1.84; observing men-
tal events M = 1.00 h, SD = 1.23; and observing nature of con-
sciousness M = 1.19 h, SD = 1.12). The retreat groups (RG1,
RG2) did not differ on the amount of time spent practicing solitary
shamatha meditation (t(42) = 0.49, p = .63). Participants met
twice daily for group meditation practice and discussion guided
by Dr. Wallace. Participants also met one-on-one with Dr. Wallace
on a weekly basis for advice, clarification, and guidance.
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EEG data collection and preprocessing

Dense-array scalp EEG was recorded from 88 locations (equidis-
tant montage, www.easycap.de) using a Biosemi Active2 system
(www.biosemi.com) with 24-bit resolution sampled at 2048 Hz
while participants engaged in a 12-min period of silent, eyes-closed
mindfulness of breathing FA meditation. Participants were assessed at
the beginning (T1), middle (T2), and end (T3) of each three-month
retreat. During each assessment, the meditation began with approxi-
mately 50 s of audio instructions (provided below), recorded by
Dr. Wallace:

“During the next 12 minutes, engage in the practice of mindfulness
of breathing, focusing your attention on the tactile sensations at
the apertures of your nostrils or just above your upper lip.With each
inhalation arouse your attention and focus clearly on these tactile
sensations. With each out-breath continue to maintain your atten-
tion upon the tactile sensations, while relaxing your body andmind,
releasing any involuntary thoughts that may arise. So in this way
maintain an ongoing flow of mindfulness, arousing with each in-
breath, relaxing with each out-breath.”

A recorded sound (“chime”) signaled the end of the 12-minutemed-
itation period. Continuous EEG was recorded over this entire period.
However, due to an error in data acquisition at T1, only the first 6 min
of datawas recorded for some subjects. To allow for comparisons across
all time points and datasets, we restricted analyses to the first 6 min of
meditation across all three assessments in both retreats.

The 88-channel EEG data were band-pass filtered offline between
0.1 and 200 Hz. Second-order blind source identification (Belouchrani
et al., 1993) was used to derive and separate non-neural signal contam-
inants from the ongoing electrical brain activity. Sources of putative
non-neural origin were identified using a novel semi-automatic
artifact removal tool (SMART, available at http://stanford.edu/~saggar/
Software.html). Extensive details regarding artifact identification and
removal procedures can be found in Saggar et al. (2012). Special
attention was given to remove sources due to muscular artifacts (aka
electromyogram or EMG). Such sources were identified using low
auto correlation values, broadband power across all frequencies and
localized topographical locations (Saggar et al., 2012). After artifact re-
moval, the 88-channel EEG data were reconstructed and transformed
into a standard 81-channel montage (international 10–10 system),
using spherical spline interpolation (Perrin et al., 1989). Interpolations
were accomplished using Brain Electrical Source Analysis software
(BESA 5.2; www.besa.de) with a smoothing parameter value (λ) of
2 × 10−6. This transformation ensured that channel locations were
standardized and that the number of channels remained consistent
across participants. Eight channels (AF9, Fp1, Fpz, Fp2, Nz, AF10, CB1,
CB2) from the 81-channel montagewere excluded because information
from the nearest corresponding electrode sites was not fully available in
the originalmontage, yielding a final 73-channelmontage for the recon-
structed EEG. These reconstructed data were then transformed to a
reference-free estimation of scalp current density (CSD; Kayser and
Tenke, 2006).

Experimental EEG measures: power spectrum and individual alpha
frequency estimation

The 6 min of reconstructed, artifact-free continuous EEG data were
divided into two-second segments with 75% overlap. Power spectra
were then calculated for each of these segments using the multi-
tapered power spectral density estimation method (Mitra and
Pesaran, 1999; Oostenveld et al., 2011) using in-house scripts imple-
mented in MATLAB (MATLAB, 2010). Multi-tapered estimation im-
proves power spectra estimation by obtaining multiple estimates from
each sample.
Individual alpha frequency (IAF) was estimated using the center of
gravity method for the frequency range of 7 Hz (f1) to 14 Hz (f2)
(Klimesch, 1999),

αIAF ¼
X f2

i¼ f1
a f ið Þ � f ið ÞX f2

i¼ f1
a f ið Þð Þ

; ð1Þ

where power-spectral estimates at frequency fi are denoted by a(fi). The
αIAF values were calculated for each channel and were averaged across
all channels to obtain a single IAF value per participant.

Model architecture

The Robinson et al. (2001b) mean-field modeling approach
employs corticothalamic architecture and dynamics to simulate
scalp EEG, and is based on earlier works on continuum modeling of
EEG (Freeman, 1975; Liley and Wright, 1994; Lopes da Silva et al.,
1974; Nunez, 1974a; Rennie et al., 1999; Robinson et al., 1997,
1998; Wilson and Cowan, 1973). This approach incorporates basic
neurophysiological principles and structures, including transmission
delays in axonal propagation, excitatory and inhibitory neural popu-
lations, and length- or range-dependent connections between corti-
cal and subcortical populations (an overview is presented in Fig. 1
and a description of physiological limits is listed in Table 1). The R-
MFM has been successfully used to reproduce various temporal and
spectral properties of EEG data, such as evoked potentials (Kerr
et al., 2008, 2010), seizure dynamics (Breakspear et al., 2006;
Robinson et al., 2002), scalp-recorded EEG power spectra (Rennie
et al., 2002; Robinson et al., 2001b; Rowe et al., 2004a), inter-
channel coherence and correlation (Robinson et al., 2003a), and
changes due to aging in healthy adults (Kerr et al., 2010, 2011; van
Albada et al., 2010).

Model simulation and data fitting

First, all 73 EEG channels were independently modeled using the
R-MFM. This approach assumes spatial uniformity and local inde-
pendence in model parameters (i.e., a change in a parameter value
at a distant channel will not affect the spectrum of the channel
under observation). Thus, while modeling each channel, the values
of parameters are chosen such that the modeled spectrum for each
channel matches the experimental EEG spectrum. This approach is
known as the local effective value (LEV) model (O'Connor and
Robinson, 2004) and, although a first approximation, is both analyt-
ically tractable and computationally light (O'Connor and Robinson,
2004). For eyes-closed states, it has been shown that the local
independence assumption of the LEV model is maintained within
constraints of the model, except for low frequencies (i.e., b2 Hz)
and at alpha frequency. However, this non-independence at alpha
frequency is much smaller in magnitude than analogous effects at
lower frequencies (O'Connor and Robinson, 2004).

Although care was taken to remove artifactual sources of noise
(especially electromyographic activity (EMG) due to scalp muscle
tension) during preprocessing and post-SOBI reconstruction of
EEG data, a parameter for remaining EMG artifact was included
in the estimation of power spectrum for each channel, as follows,

Pest fð Þ ¼ PEEG fð Þ þ PEMG fð Þ: ð2Þ

No additional smoothing was performed on the experimentally
recorded spectrum. The χ2 error between the estimated spectrum
(Pest(f)) and the experimentally obtained spectrum (Pexp(f)) was
reduced using the trust-region-reflective constrained optimization

http://www.easycap.de
http://www.biosemi.com
http://stanford.edu/~saggar/Software.html
http://stanford.edu/~saggar/Software.html
http://www.besa.de


Fig. 1. The cortico-cortical, cortico-thalamo-cortical, and intrathalamic parameters of the R-MFM. (a) A schematic of cortico-thalamic connections in the left hemisphere, via the reticular
nucleus of the thalamus (TRN). (b) Basic neuronal physiology incorporated in themodel, shown in a cortical neuron. Synaptic connections at the dendritic tree are shown emanating from
pulse-rate fieldsϕb, where, b= e, i, s for cortical excitatory, inhibitory and subcortical connections, respectively. Somaticmembrane potential is shown as Va, where a= e, i with resultant
impulse firing rate Qa and the spread of action potentials as fieldϕa, along the axons. (c) A schematic showing primary pathways between cortex, TRN, and thalamic secondary relay nuclei
(SRN). Dashed lines represent inhibitory connections while solid lines represent excitatory ones. Gei depicts the projections between local excitatory and inhibitory neurons in the cortex,
while Gee depicts similar projections between excitatory cortical neurons. These excitatory pyramidal neurons also project (through ϕe) to the thalamus, where signals may propagate
(i) via TRN and then SRNwith gain Gesre=GesGsrGre, or (ii) directly via SRNwith gain Gese=GesGse. The SRN projects back (throughϕs) to the cortex, parametrized as the gainGes.Within
the thalamus, the intrathalamic loop has the gain Gsrs = GsrGrs. Cortical activation (through sensory input) occurs via ϕn and ϕs with the gain GesGsn. The diagram is adapted from Rowe
et al. (2005). (d) Model parameters thatwere inspected using longitudinal analysis. Fivemodel parameters related to the strength or efficacy of the corresponding loops are shown in the
figure: cortico-cortical excitatory (Gee; in green), cortico-cortical inhibitory (Gei; in red), cortico-thalamo-cortical via TRN (Gesre; in blue), cortico-thalamo-cortical without TRN (Gese; in
purple), and intrathalamic loop (Gsrs; in orange). Five other parameters (not shown in the figure) were also inspected longitudinally: cortical damping rate (γe), dendritic decay rate (α),
conduction delay in the signal from cortex to thalamus and back (t0), normalization parameter for the spectrum (P0), and normalization parameter for the EMG component (A).
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algorithm (Coleman and Li, 1993), implemented in MATLAB, in which
χ2 is calculated for each site as

χ2 ¼
XN
i¼1

log Pexp f ið Þ
� �

− log Pest f ið Þð Þ
h i2

: ð3Þ

The range for parameter values was bounded using the physiology-
based limits presented in Table 1.

Model extension 1: longitudinal analysis

To model longitudinal changes in EEG data associated with medita-
tion training, the R-MFM was extended to investigate changes in
parameter values across assessment points (T1, T2, and T3) for all
73 channels separately for both retreats. In this extended approach
(ER-MFM), spatiotemporal changes in model parameters were exam-
ined using nonparametric cluster-based permutation testing (Maris
and Oostenveld, 2007) using FieldTrip (Oostenveld et al., 2011), an
open-source toolbox implemented in MATLAB. This approach has
been used previously for analyzing changes in power spectra and coher-
ence metrics in MEG and EEG data (Maris and Oostenveld, 2007; Maris
et al., 2007). Our procedure for investigating changes in model parame-
ters is shown schematically in Fig. 2 and is detailed in Algorithm 1.

Algorithm1. Group-level nonparametric statistical test for each R-MFM
parameter pi

Null Hypothesis (H0): pi does not differ across the three assessments
points

1. Collect pi for all 73-channels across all subjects and assessments into
a single super-set.

2. Randomly partition the super-set into three equal sets of subjects.
3. Calculate the cluster-based test-statistic as follows:

a. For every channel, compare the parameter valuepi across the three
assessment-points, using the corresponding F-test statistic.

b. Select all channels with F-values larger than a given threshold.



Table 1
Initial values and physiologically restricted limits of model parameters in the current study as prescribed by Rowe et al. (2004a). The ten model parameters that were varied during data
fitting are indicatedwith an asterisk (*) next to their initial values. The limits,fixed values, and initial values are in linewith the independent sources andphysiologicalmeasures (Robinson
et al., 1997; Rowe et al., 2004b; Shwedyk et al., 1977; Van Boxtel, 2001).

Model Parameter Description Physiological limits Initial value

EEG parameters γe Cortical damping parameter to incorporate reduction in signal with
increasing axonal distance

[40, 400] 130 per second*

α Dendritic decay rate parameter to incorporate temporal spread and
conduction delay in the dendritic tree

[10, 200] 75 per second*

β Dendritic rise rate parameter to incorporate temporal spread and
conduction delay in the dendritic tree

Depends on "α 3.8 × α per second

t0 Conduction delay parameter to incorporate temporal delay in signal
transmission from cortex to thalamic nuclei and back

[0.06, 0.13] 0.084 s*

Gee Excitatory gain parameter to incorporate connection strength from
pyramidal cells

[0, 50] 5.4*

Gei Local intra-cortical inhibitory gain parameter to incorporate
connection strength from stellate cells

[−35, −1] −7*

Gese First corticothalamocortical gain parameter to incorporate combined
strength of connections from cortex to secondary relay nuclei and
back to cortex

[0, 50] 5.6*

Gesre Second corticothalamocortical gain parameter to incorporate
combined strength of connections from cortex to reticular nucleus to
secondary relay nuclei of thalamus and back to cortex

[−30, 0] −2.8*

Gsrs Intrathalamic gain parameter to incorporate connection strength
within two thalamic nuclei (TRN and SRN)

[−15, 0.5] −0.6*

k0re Volume conduction filter parameter Fixed 3.0 a.u.
lx,ly Linear dimensions of cortex Fixed 0.5 m
re Characteristic pyramidal axon length Fixed 0.08 m
P0 Overall power normalization Estimated from the data Estimated from the data*

EMG parameters A Power normalization [0, 99] 0.5 μV2/Hz*
fpk Peak frequency of the EMG spectrum Fixed 40 Hz
δ Asymptotic slope parameter Fixed 2 a.u.
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c. Cluster the selected channels in connected sets on the basis of
spatial adjacency.

d. Calculate the cluster-level F-statistic by taking a sum over all
F-values within a cluster.

e. Output the largest of the cluster-level statistics.

4. Repeat Steps 2 and 3 a large number of times (e.g., 10,000) and
construct a histogram of the test statistics.

5. Using the observed test-statistic and the histogram from Step 4, esti-
mate the proportion of random partitions that resulted in a larger
test-statistic than the observed test statistic. This proportion is the
p-value.

6. If the p-value is less than the designated critical alpha-level (p =
0.05, corrected for False Discovery Rate), then conclude that the
null hypothesis H0 is rejected and that the parameterpi is significant-
ly different across assessment points.
Model extension 2: TRN connectivity

The original R-MFM, as described above, incorporates interactions
between the cortex, reticular nucleus (TRN), and the specific relay
nucleus (SRN) of the thalamus. However, it does not account for
within-TRN interactions. One potential approach for modeling lateral
connectivity in the TRN is to simulate and fit EEG power spectra concur-
rently across all EEG channels, an approach referred to as non-uniform
R-MFM (O'Connor and Robinson, 2004; Robinson et al., 2003b). In this
non-uniform approach, interactions between the modeled TRN
cells can be retrieved after concurrent data simulation and fitting.
The difficulty, however, is that in addition to fitting the 10 usual
parameters per channel (see Table 1), simulating and fitting the
coupled connectivity between 73 TRN cells (due to 73-channel EEG
data) would come at the cost of increased computational resources
and putative loss of analytical tractability in some cases (O'Connor
and Robinson, 2004).

To address this challengewithout resorting to a non-uniformmodel-
ing approach, we developed a novel procedure to model TRN's lateral
connectivity and to explore changes in such connectivity associated
with meditation training (Fig. 3). After model fitting of experimental
spectra for all electrodes, white noise was injected into the modeled
cortical cells (Fig. 3C). The activity due to the injected noise in the
modeled TRN cells was extracted using linear algebra based on the orig-
inal time domain R-MFM equations:

ϕr tð Þ ¼
ϕe t− to

2

� �
Gesre þ GeseGsrs½ � þ ϕn tð Þ GesGsnGsrs½ �

GesGsrð Þ 1−Gsrsð Þ ; ð4Þ

where Gsn = 1, Ges ¼
ffiffiffiffiffiffiffiffiffi
Gese

p
; andGsr ¼

ffiffiffiffiffiffiffiffiffiffiffi
Gsrsj jp

: In order to analyze TRN
connectivity, correlations between the extracted signals from TRN cells
were computed (a high correlation between two TRN cells would indi-
cate higher connectivity). For robust estimation, many iterations (n =
100) of noise injection and correlation matrix estimation were per-
formed for each cell. The correlation matrix was then averaged over
all trials and k-means clusteringwas performed on the resultingmatrix.
The value of k was chosen based on the visual inspection of the dendro-
gram generated by hierarchical clustering (MATLAB, 2010). Longitudi-
nal changes in the structure and the connectivity of these clusters
were evaluated using non-parametric statistical testing (Algorithm 1).

Stability analysis

Using linear stability analysis, Robinson et al. (2002) suggested that
low-frequency instabilities of the brain can be modeled in a reduced
three-dimensional parameter space b xyz N, where, x ¼ Gee

1−Gei
; y ¼

GeseþGesre
1−Gsrsð Þ 1−Geið Þ ; and z ¼ − Gsrsαβ

αþβð Þ2 : These parameters represent cortical

(x), corticothalamic (y), and intrathalamic stability (z)), respectively.
In their procedure, Robinson et al. (2002) defined the stability zone
for the modeled brain as the b xyz N space under a three-dimensional
surface defined by parameter values that induce instabilities in different
frequency bands and features of the EEG (alpha, theta, and spindles).
Thus, various brain states can be mapped onto this b xyz N space (see
Fig. 3 in Robinson et al., 2002).



RG1 CG

Retreat 1 Retreat 2

RG2

T1 T2 T3 T1 T2 T3 T1 T2 T3

H0
1: Model parameters at all 

the test-points belong to the 
same underlying population

H0
2: Model parameters at all 

the test-points belong to the 
same underlying population

H0
3: Model parameters at all 

the test-points belong to the 
same underlying population

Nonparametric cluster-based 
permutation testing

Nonparametric cluster-based 
permutation testing

Nonparametric cluster-based 
permutation testing

Results were corrected for 30 high level tests (3 H0 x 10 Parameters) using 
False Discovery Rate procedure

Fig. 2. Experimental design for longitudinal analysis of changes inmodel parameters due to training. After fitting themodel for each assessment, the null hypotheses were tested for each
group using the nonparametric cluster-based permutation analysis, followed by False Discovery Rate (FDR) correction for 30 nonparametric tests. The direction of effects, i.e. how param-
eter values change from T1 to T2 to T3, were examinedwith aWilcoxon's test (with Bonferroni correction). Overall, this extension provides a statistical approach for longitudinal analysis
of changes in the model parameters across all channels.
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To explore how observed longitudinal changes in model parameters
may alter the overall stability of modeled brain dynamics, fitted model
parameters from the three assessment points were mapped to the re-
duced b xyz N space separately for each retreat. As in the case of other
model parameters, non-parametric statistical testing (Algorithm 1)
was used to longitudinally analyze changes in the reduced-set of stabil-
ity parameters (x, y, and z).

Results

All reported post-hoc Wilcoxon tests are Bonferonni-corrected (ad-
justed p-values reported, where indicated).

Data fitting

Using the LEV approach, experimental EEG power spectra were
fitted independently for all electrodes (73 channels), separately for
each participant and assessment point. As shown in Fig. 4, the model
was successful in recreating the recorded EEG spectra (see Table 2 for
goodness of fit results), while keeping the parameters within the phys-
iologically plausible range (Tables 3 and 4). To verify that the aggregate
model fitting procedure was unbiased across assessments, a non-
parametric false-discovery-rate (FDR)-based procedure was used to
find differences in the sum-squared errors in fit for each channel across
the three assessments within each group of participants. Dependent
sample F-tests were used (with a Bonferroni-corrected alpha level of
p b 0.05) to test for differences across assessments. No differences in
fit accuracywere found across assessments in any group, demonstrating
that the model fitting was generally unbiased.

Longitudinal analysis of model parameters

As expected, no changes in any of the 10 model parameters were
found across assessments for the CG. Changes in two out of 10model pa-
rameterswere found to replicate across retreats: intrathalamic gain (Gsrs)
and cortico-thalamic delay (t0). In RG1, a decrease in intrathalamic gain
was found in the right lateral parieto-occipital cluster of modeled chan-
nels (p = 0.01, FDR corrected; Fig. 5). Bonferroni-corrected (.05/3)
post-hoc Wilcoxon tests revealed a significant reduction at T2
(p b 0.001) and T3 (p = 0.007), as compared to T1. No differences were
found between T2 and T3. In RG2, a similar pattern of decrease in
intrathalamic gain was found in a right-parietal cluster of modeled chan-
nels (p = 0.04; Fig. 5). Post-hoc Wilcoxon tests revealed a reduction in
intrathalamic gain at T2 (p = 0.014) and T3 (p = 0.001), as compared
to T1. Again, no difference was found between T2 and T3.

The cortico-thalamic delay parameter increased with meditation
training (Fig. 6). This effect was evident in both retreat groups. In RG1,
an increase in the delay parameter was found at bilateral parietal–
occipital model locations (p=0.003). Wilcoxon tests revealed a signif-
icant increase at T2 (p b 0.001) and T3 (p = 0.007) when compared to



Fig. 3.Measuring interactions in the modeled TRN layer. (a) Two units of the model and their interactions (dashed lines) in the TRN layer are shown. Ideally, parameter values for such
interactions should befitted alongwith all the other parameters of themodel. However, given 73 units in total, this approachwill lead to a combinatorial explosion of thefitting procedure.
Thus, we developed a novel approach as described in (c). (b) The three layers of themodel. Each column ismodeled independently using the LEV approach. (c) The procedure formalizing
within-TRN connectivity. After fitting the model to real EEG data, white noise was injected in the cortical cells and the resulting activity in the TRN cells was measured. Connectivity anal-
ysis in the TRN layer was then performed. (d) An example correlation matrix of injected white noise (no off-diagonal correlations present) and the resulting correlation matrix from TRN
cells for a representative participant are shown. The diagonal elements in the TRN layer are set to zero for clarity. Instead of random ordering, an organized structure is evident in the cor-
relation matrix of TRN cells, suggesting that even though these cells were modeled independently, connectivity information between them can still be discovered.
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T1 and no change between T2 and T3. Similarly, in RG2, an increasewas
found at right parietal–occipital modeled locations (p = 0.01).
Wilcoxon tests revealed an increase in delay parameter value at T2
(p=0.001) and T3 (p=0.001)when comparedwith T1, but no change
was found between T2 and T3.

Stability analysis

To examine changes in stability of the modeled EEG dynamics in a
reduced three-dimensional parameter space, the cortical (x),
corticothalamic (y), and intrathalamic (z) stability parameters were an-
alyzed separately. Only the intrathalamic stability parameter z was
found to change across assessments for both retreat groups (RG1: p
(FDR corrected) = 0.011 and RG2: p = 0.033; Fig. 7). The cluster loca-
tions found for z were identical to those found for Gsrs. This is because
the z parameter, by definition, is directly proportional to Gsrs, which
changed significantly as indicated in the section Longitudinal analysis
of model parameters. No cluster was found for the CG. Therefore, for
the purpose of analysis, clusters found for RG1 participants were used
to extract data for post-hoc comparisons of CG participants within Re-
treat 1, while clusters found for RG2were used to extract CGdatawithin
Retreat 2. Thus, for Retreat 1 control data, CG cluster electrodeswere not
based on the clusters found for these individuals themselves when in
their own retreat. A Wilcoxon test for the RG1 model cluster revealed
a significant decrease in z at T2 (p = 0.002) and at T3 (p = 0.001), as
compared to T1. As expected, there were no changes in z parameter
values for the corresponding cluster extracted from the modeled CG
data. AWilcoxon test for this cluster in the RG2model revealed a signif-
icant decrease in the z parameter at T2 (p=0.014) and T3 (p=0.001),
when compared to T1. Again, there was no change in z values extracted
from CG for the same cluster.

TRN connectivity analysis

We used the second model extension (see Model extension 2: TRN
connectivity) to examine longitudinal changes in intra-TRN connectivi-
ty. We took a three-part approach to this analysis. First, to qualitatively
examine the overall pattern of intra-TRN connectivity,we used k-means
clustering to identify two groups of TRN cells characterized by high
within-cluster correlations. To visualize the topography of these k-
means clusters, we utilized the topographical organization of the exper-
imentally recorded EEG,where each of the channels is an independently
modeled instance of R-MFM (see example in Fig. 8a). Within the TRN
layer, each cell in the anterior cluster was assigned +1 and each cell
in the posterior cluster was assigned−1. To create average “scalp” clus-
ter topographies, we averaged these +/−1 assignments across partici-
pants within each dataset and assessment. Overall, we observed an
anterior to posterior segregation of within-TRN layer connectivity that
is visualized at the group level in Fig. 8b.

Next, we investigated longitudinal changes in this anterior/
posterior-segregated pattern. We used nonparametric cluster-based
permutation testing on the topographies created from anterior/posteri-
or assignments based on inter-cell correlation values. No significant
changes were found across assessments for any group, indicating that



Fig. 4. Results from model fitting of the EEG data for representative participants across scalp and groups. Real EEG spectrum is shown in solid black line and modeled EEG spectrum in
dashed red line. Each column shows a different mid-line channel across the scalp (out of 73 channels, due to space limitations). There is close correspondence between themodel spectra
and experimental spectra across the scalp, participants, and groups.
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this feature of spatial segregation is stablewith respect to shamatha and
related FA-meditation training.

Finally, to examine longitudinal changes in connectivity (i.e., mean
correlation values) both within and between the anterior and posterior
clusters, we performed a related-samples Friedman's Analysis of Vari-
ance by Ranks Tests (a non-parametric alternative to parametric one-
way ANOVA with repeated measures Friedman, 1937) separately for
the three participant datasets (RG1, CG, and RG2). For each dataset,
we examined the null hypothesis that the distributions of within- and
between-cluster connectivity did not differ across time points. Out of
the nine tests (i.e., 3 datasets × 3 connectivity tests (2 within-cluster
and 1 between-cluster)), only two rejected the null hypothesis
(FDR-corrected p b 0.05), such that in both retreat groups (RG1 and
RG2) between-cluster connectivity was significantly different across
time points (FDR-corrected p=0.0495 for each dataset). In RG1, the
post-hoc Wilcoxon tests revealed a significant increase in between-
cluster connectivity at T3 as compared to T1 (p=0.046), and no sig-
nificant difference was found between T1 and T2 or between T2 and
T3 (Fig. 8c). In RG2, however, a significant increase in between-
cluster connectivity was observed at T2 (p = 0.010) compared
with T1, (Fig. 8c) and no differences were found between T1 and T3
or between T2 and T3 (Fig. 8c).
Table 2
Goodness of fit results based onR-square values. The results are averaged over all channels
and participants for each assessment and group, after fitting to the real EEG spectrum.
Overall, themodel accounted for more than 98% variance in all the cases. More important-
ly, low standard deviations indicate that the model fit the data consistently across the
scalp and the participants.

RG1 CG RG2

μR2 σR2 μR2 σR2 μR2 σR2

T1 0.985 0.0055 0.984 0.0053 0.983 0.0063
T2 0.983 0.0076 0.985 0.0057 0.984 0.0057
T3 0.984 0.0061 0.985 0.0063 0.983 0.0069
Relating changes in model parameters to observed cortical activity

A series of regressions were used to examine relations between
changes in model-derived parameters and previously reported longitu-
dinal changes in beta-band power and alpha-frequency in this same
dataset (Saggar et al., 2012). Because patterns of change in model pa-
rameters and observed oscillatory activity were similar across retreats,
RG1 and RG2 datasets were combined for the regression analyses.

Relating changes in model parameters to change in beta-band power
Neither the intrathalamic gain nor the corticothalamic delay at T1

was a significant predictor of beta-band power at T1 (R2 = 0.01,
F(1,42) = 0.028, p = 0.867 and R2 = 0.013, F(1,42) = 0.565, p =
0.456, respectively).

We examinedwhether longitudinal changes in these twomodel pa-
rameters might predict reductions in observed beta-band power. In the
first multiple regression, beta-band power and intrathalamic gain at T1
were included as predictors of beta-band power at T3 to account for
baseline levels in these predictors prior to training. These predictors
explained a significant amount of variance in T3 beta-band power
(R2= 0.80, F(2,41)= 84.22, p b 0.001). In the second step, the addition
of the intrathalamic gain parameter value at T3 did not significantly
add to the explained model variance (ΔR2 = 0.001, ΔF(1,40) = 0.21,
p = 0.65).

In a second multiple regression, we used an identical analytic strat-
egy to test the predictive effects of corticothalamic delay on observed
beta-band power. Again, beta-band power at T3 served as the depen-
dent variable and beta-band power and corticothalamic delay at T1
were included as initial predictors. These predictors explained a signifi-
cant amount of variance in T3 beta-band power (R2 = 0.80, F(2,41) =
83.35, p b 0.001). Similar to thefirst hierarchical regression, the addition
of T3 corticothalamic delay value did not significantly add to the ex-
plainedmodel variance (ΔR2=0.002,ΔF(1,40)=0.45, p=0.51). Alto-
gether, collapsed across the retreats, changes in observed beta-band
power were not predicted by longitudinal changes in either the
model-predicted intrathalamic gain or corticothalamic delay parameters.



Table 3
Mean values of fittedmodel parameters for each set of participants (RG1, CG, and RG2) and assessments (T1, T2, and T3). The values are averaged over all channels and participants after
fitting to the real EEG spectrum collected during meditation state. As evident, the final parameter values are within the physiologically plausible range (refer to Table 1).

α t0 Gsrs γe Gee Gei Gesre Gese p0 A

RG1 T1 113.7 0.0889 −0.8977 282.7 24.5 −29.93 −4.99 15.12 0.1652 7.8
T2 116.9 0.0865 −0.8027 287.1 24.7 −30.34 −3.73 14.48 0.1468 6.8
T3 113.8 0.0860 −0.8471 287.9 24.0 −30.10 −3.94 15.54 0.1694 7.2

CG T1 112.0 0.0863 −0.9474 275.6 24.0 −29.89 −3.86 16.31 0.2702 8.1
T2 113.2 0.0850 −0.9288 281.8 25.0 −30.75 −3.64 15.04 0.2117 7.9
T3 111.2 0.0850 −0.9295 273.6 23.9 −29.87 −3.81 16.38 0.2508 7.6

RG2 T1 111.6 0.0913 −0.8419 296.1 25.5 −30.68 −4.95 15.50 0.2244 9.4
T2 112.4 0.0897 −0.8046 293.9 26.1 −31.16 −4.35 15.02 0.2051 8.9
T3 114.6 0.0896 −0.8030 287.8 25.8 −30.26 −4.72 14.83 0.1937 8.9

97M. Saggar et al. / NeuroImage 114 (2015) 88–104
Relating changes in model parameters to change in individual alpha
frequency

Intrathalamic gain marginally predicted IAF at T1 (R2 = 0.08,
F(1,42) = 3.62, p = 0.064), while corticothalamic delay at T1 signifi-
cantly predicted IAF at T1 (R2 = 0.50, F(1,42) = 42.67, p b 0.001).

We next examined whether longitudinal changes in the two
model parameters could explain the longitudinal reduction in IAF.
Intrathalamic gain at T1 explained a significant amount of variance in
T3 IAF (R2 = 0.87, F(2,41) = 138.65, p b 0.001). The addition of the T3
intrathalamic gain parameter did not significantly add to the explained
model variance (ΔR2 = 0.006, ΔF(1,40) = 1.9, p = 0.175).

In a second multiple regression, we again included IAF at T3 as the
dependent variable and IAF and corticothalamic delay at T1 as predic-
tors to account for baseline levels before training. These predictors ex-
plained a significant amount of variance in T3 IAF (R2 = 0.87,
F(2,41)=137.73, p b 0.001). Contrary to the prior analyses, the addition
of the T3 corticothalamic delay value significantly improved the ex-
plainedmodel variance (ΔR2= 0.042,ΔF(1,40)= 19.16, p b 0.001). Al-
together, collapsed across the retreats, reductions in IAFwere associated
with increases in the corticothalamic delay parameter (β = −0.46).
Discussion

This paper presents the first mean-field computational model of
scalp-measured electrophysiology obtained during the practice of fo-
cused attentionmeditation. By simulating and fitting EEG data recorded
duringmeditation, this approach permits mathematical analysis of lon-
gitudinal changes in oscillatory activity and makes testable predictions
to advance experimental research in this area. Themean-fieldmodeling
approach of Robinson et al. (2001b) was used to simulate scalp-
recorded EEG with the incorporation of corticocortical, corticothalamic,
and intrathalamic loops. This model was successfully extended to allow
for longitudinal analysis of changes in model parameters and intra-TRN
connectivity due to training. We observed reliable training-related
changes in two model parameters, replicated for each of two separate
training groups. First, the intrathalamic gain parameter (Gsrs) decreased
significantly with training, suggesting reduced inhibition of modeled
Table 4
Average standard deviation values of fitted model parameters for each set of participants (RG1

α t0 Gsrs γe

RG1 T1 13.53 0.0047 0.4006 57.31
T2 13.9 0.0056 0.2812 49.51
T3 13.03 0.006 0.3318 52.82

CG T1 11.21 0.0066 0.4187 55.6
T2 11.27 0.0072 0.4193 62.91
T3 11.12 0.0064 0.4239 60.13

RG2 T1 10.9 0.0059 0.3918 65.96
T2 9.44 0.007 0.3619 66.38
T3 9.94 0.0077 0.3691 64.37
SRN cells by the TRN. Using stability analysis, we found that the reduc-
tion in intrathalamic gain provided increased stability to the modeled
dynamical system. Second, the corticothalamic delay parameter (t0)
increasedwith training, indicating an increase in transmission delay be-
tween modeled cortical and thalamic cells. The increase in modeled
corticothalamic delay strongly predicted individual reductions in exper-
imentally observed individual alpha frequency (Saggar et al., 2012).
Lastly, intra-TRN connectivity analysis implicated a clear anterior–
posterior connectivity-based segregation in the modeled TRN layer.
While this anterior–posterior connectivity remained stable over train-
ing assessments, an increase in between-cluster anterior–posterior
connectivity was observed in both retreat groups following training.
Taken together, these findings suggest that changes in attentional and
other cognitive processes through intensive meditation training may
be supported by longitudinal changes in corticothalamic dynamics.
Modeling dense-array EEG with ER-MFM

To minimize the effect of local dependency at low frequencies, we
restricted the analysis to frequencies higher than 2Hz. Further, two spe-
cificmethodswere used tominimize the local dependence effects at the
alpha frequency. First, during preprocessing, EEG data were trans-
formed using scalp current density (SCD) estimation. The SCD transfor-
mation creates reference-free EEG and reduces effects of volume
conduction (Srinivasan et al., 2007), thereby lowering the effect of dis-
tant activity on local sites. Second, we used a nonparametric cluster-
based permutation approach to identify longitudinal changes in model
parameters. This cluster-based approach is similar to cluster-corrected
algorithms used in fMRI data analysis, where information from neigh-
boring voxels is considered when estimating the activity at a local site
(Smith and Nichols, 2009). This approach, although insensitive to ex-
tremely local changes (e.g., when studying effects at the single scalp
electrode level), works well for EEG data (Maris and Oostenveld,
2007). Thus, by including information about neighboring sites, this
cluster-based extension helps to minimize violation of local indepen-
dence and likely provides a more plausible model than the LEV ap-
proach alone. In the future, this approach should be tested against
, CG, and RG2) and assessments (T1, T2, and T3).

Gee Gei Gesre Gese p0 A

3.09 2.07 2.53 4.14 0.1384 4.09
3.17 2.4 2.72 4.92 0.1245 3.69
4.04 2.32 3.01 4.92 0.1552 4.37
2.77 2.05 2.01 4.62 0.191 2.91
3.25 2.55 2.5 6.22 0.1578 2.89
3.61 1.99 2.22 6.31 0.1849 2.64
3.16 2.12 2.84 5.14 0.1696 4.13
3.54 2.9 2.71 5.39 0.1566 3.71
3.63 2.89 2.63 4.18 0.1687 3.81
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Fig. 5. Reduction in intrathalamic gain (Gsrs) duringmeditation. The color bars represent F-statistics. Using a nonparametric cluster-based permutation approach, significant clusters were
found in RG1 and RG2, whereas no clusters were found in CG. Clusters from RG1 and RG2 were used to extract data from CG participants, separately for each retreat, for post-hoc com-
parison and plotting of bar graphs. Overall, the reduction in intrathalamic gain duringmeditation was replicated across the retreats in similar spatial locations and no effect was found for
the CG using either cluster. Error bars represent standard error of the mean.
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more sophisticated modeling approaches, where inter-connectivity be-
tween channels is also modeled (O'Connor and Robinson, 2004;
Robinson et al., 2003b).

After fitting the experimental EEG data, the R-MFMmodel was able
to explain more than 98% of the variance across channels, assessments,
and groups (Table 2). Here, SOBI and SMART were used to ensure that
only high-quality EEG, relatively free from EMG and EOG contamina-
tion, was used for model fitting (Saggar et al., 2012). This likely contrib-
uted to the success of fitting the model to the recorded data. It is
possible, however, to further improve accuracywithmore sophisticated
fitting algorithms. For example, Kerr et al. (2011) used Monte Carlo
simulations to enable multiple random initializations for data fitting,
thereby reducing potential bias that can be introduced when initial pa-
rameter values are held fixed.

Longitudinal changes in intrathalamic gain

Following training, we observed a reduction in the amplitude of
intrathalamic gain in the modeled EEG sites overlying the right parietal
region in both retreat groups. Compared to pre-training values,
intrathalamic gain was reduced by the mid-assessment point and
remained low at post-assessment. This parameter represents the
strength of inhibitory connection between the TRN and SRN cells. Be-
cause TRN cells exert a solely inhibitory influence on the SRN in this
model, the observed reduction in this parameter suggests decreased in-
hibition of SRN cells.
The TRN has long been hypothesized to play important roles in both
selective attention (Crick, 1984) and general alertness (Steriade et al.,
1993). Crick (1984) argued that, during selective attention, TRN cell
activity modulates the corticothalamic inputs that excite or inhibit
specific SRN cells, thereby regulating the flow of sensory information
to the cortex. This hypothesized modulation of SRN cells is assumed to
form a reciprocal relation between the activity of TRN and SRN cells.
In recent work, McAlonan et al. (2008) provided direct evidence for
this reciprocal relation by demonstrating that TRN cells serve as an ini-
tial source ofmodulation in SRNcells (McAlonan et al., 2008). In another
study, Lam and Sherman (2011) reported that a surprising percentage
(~25%) of the recorded neurons from somatosensory TRN received
non-topographic input from all three somatosensory relay nuclei of
the thalamus (i.e., posterior medial, ventroposterior medial, and
ventroposterior lateral relay nuclei), suggesting that some subpopula-
tions of TRN neurons may integrate somatosensory inputs from differ-
ent thalamic relays. The authors argued that, consistent with Crick's
hypothesis, such integration in TRN allows for competition between dif-
ferent inputs at the thalamic level itself, allowing stronger andmore sa-
lient inputs to suppress weaker and less relevant inputs. Altogether,
these and other related studies (Jones et al., 2010; Lam and Sherman,
2010), provide evidence for TRN's complex and versatile role in tuning
sensory inputs to enable salient information to reach the cortex.

Regarding the role of TRN in general alertness, Halassa et al. (2011)
used optogenetics and multi-electrode recording in awake behaving as
well as sleepingmice to selectively and causally test the role of the TRN
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in thalamic bursting and subsequent generation of neocortical spindles.
The authors reported that optogenetic activation of TRN resulted in
sleep-like spindles and that induction was state dependent andwas ev-
ident largely during non-rapid eye-movement (NREM) sleep and some-
what during wakefulness, but not at all during rapid eye-movement
(REM) sleep (Halassa et al., 2011).
Fig. 7. Stability analysis duringmeditation. The bar chart depicts a significant drop in intra-thala
of training. No changes were found in the CG. Error bars represent standard error of the mean
Taken together, this overview of TRN findings suggests that the re-
duction in amplitude of the intrathalamic gain parameter (or inhibition
by TRN cells) is consistent with the notion that, following intensive
training, practitioners may be more focused and alert when engaged
inmeditation. This model-generated hypothesis provides some new in-
sight into the brain processes potentially associated with meditation
mic stability parameter (z) in both retreat groups, suggesting increased stability as a result
.



Fig. 8. Connectivity analysis of the TRN layer. (a) Representative single participant posterior and anterior clusters, found after k-means clustering on the correlation matrix of TRN cells.
(b) Average topographical maps (over all participants) for each assessment and group are shown during themeditation state. For each participant, each channel was given a value of+1
(when in the anterior cluster) or−1 (when in the posterior cluster). Overall, clear separation between the anterior and poster regions of themodeled TRNwas found. (c) Between clusters
connectivity analysis revealed increased connectivity between anterior and posterior clusters associated with meditation training. Error bars represent standard error of the mean.
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training. Specifically, modulation by the TRN cells could be responsible
for enhanced cortical activity for efficient processing of salient stimuli
(i.e., object of focus) during meditation. In support of this hypothesis,
we have observed decreased bilateral frontocentral EEG beta activity
(1.2 ∗ IAF to 30 Hz) in this same cohort of participants during practice
of FA meditation. Reduced beta activity suggests increased activation
of fronto-parietal attention networks with increased training in these
techniques (Saggar et al, 2012). Behavioral evidence further indicated
improved performance on tasks assessing visual perception, vigilance,
and response inhibition for this cohort following training (MacLean
et al., 2010; Sahdra et al., 2011). In order to directly examine the signif-
icance of the intrathalamic gain parameter for models of enhanced
attention and alertness, future work should examine whether similar
patterns of change in model parameters are observed during perfor-
mance of sustained attention and response inhibition tasks.

Interestingly, using a similar computational model based on only
nine EEG electrodes, Rowe et al. (2005) showed that the baseline
intrathalamic gain parameter is reduced in adolescents diagnosed
with attention-deficit hyperactivity disorder (ADHD) after stimulant
medication. Hence, our modeling results can serve to motivate further
study of shamatha and focused-attention meditation as part of a treat-
ment approach for patients with ADHD. Preliminary support for the ef-
ficacy of meditation training in individuals with ADHD has already been
shown in several recent studies incorporating regular practice of FA
meditation as a part of training (Mitchell et al., 2013; Zylowska et al.,
2008, 2009). Zylowska et al. (2008) conducted a study that included
both adolescents and adults with ADHD and reported post-training im-
provements in self-reported scores on ADHD, depression, and anxiety
symptoms, as well as behavioral performance on attention regulation
tasks. Further, these improvements were sustained at a 3-month
follow-up (Zylowska et al., 2009). In a recent pilot study, adults with
ADHD improved in self-reported and clinician ratings of ADHD, as well
as task-based executive functioning scores, following an 8-week
group-based meditation training, as compared to a randomized wait-
list control group (Mitchell et al., 2013).

Longitudinal changes in corticothalamic delay

A corticothalamic delay parameterwas incorporated in themodel to
represent the conduction delay in signal transmission both from the
cortex to thalamic nuclei and from thalamic nuclei to the cortex. It is im-
portant to note that neither the R-MFM nor the extended model pre-
sented in this paper presumes the existence of cortical or subcortical
pacemakers or “clocks” to generate periods of alpha and beta rhythms.
Instead, the corticothalamic delay itself facilitates emergence of alpha
and beta rhythms on the modeled scalp. Further, keeping all the other
model parameters constant, the main effect of increasing the
corticothalamic delay results in reduced alpha and beta frequencies
(Robinson et al., 2001a; Saggar, 2011). Individual differences in this
delay are also conjectured to contribute to the widely observed finding
of individual differences in alpha frequency (IAF) values (Robinson
et al., 2001b). Other, more recent, computational approaches have
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shown that the corticothalamic feed-forward vs. feedback delay (i.e.
asynchronicity) results in the emergence of surface-recorded alpha/
beta rhythms without using explicit pacemakers (Jones et al., 2009;
Kerr et al., 2013). Thus, there appears to be a strong basis for relating
longitudinal changes in the modeled corticothalamic delay parameter
to previously reported findings of lowered IAF in these same partici-
pants (Saggar et al, 2012).

Themodel architecture used in this paper appears to replicate critical
aspects known from neurophysiological observation of the neuronal
basis of alpha/beta rhythm generation resulting from thalamocortical in-
teractions. For instance, to understand the neural basis of alpha-rhythm
generation, Bollimunta et al. (2011) recently concluded that the alpha
generators in layer 6 of the macaque primary-visual cortex were consis-
tently the strongest contributors to alpha-rhythm generation across
other penetrations. This observation, along with previous results show-
ing that feedback from the striate cortex to thalamic nuclei originates
from layer 6 of the same cortical column that receives afferents from
the thalamic nuclei (Callaway, 1998; Sherman and Guillery, 2006), sup-
ports the idea that the alpha rhythm recorded over primary visual cortex
of macaques could be generated primarily by thalamocortical interac-
tions (Bollimunta et al., 2011).

Here, we observed an increase in the model parameter representing
corticothalamic delay in modeled electrodes overlaying parietal–occip-
ital regions. The increase in corticothalamic delay was observed across
both training groups, and was evident at both the mid- and post-
assessment points. Importantly, the increase in modeled delay values
predicted a drop in observed alpha frequency (IAF values) after training.
Studies of meditation, including our previouswork (Saggar et al., 2012),
have repeatedly shown that long-term meditators have reduced alpha
frequency during meditation (Banquet, 1973; Kasamatsu and Hirai,
1966; Wallace, 1970; Zhang et al., 1988) as well as during baseline
rest (Aftanas and Golosheikin, 2001, 2002, 2003). However, the biolog-
ical basis for this finding is still unknown.

The present modeling results suggest that the increased
corticothalamic delay involving parietal–occipital regions might ac-
count for the reduced alpha frequency observed in meditators. Howev-
er, the construct of “corticothalamic delay” itself is complex. Multiple
potential processes can influence corticothalamic effective delay.
These include variable synaptic delays, activation of different subpopu-
lations of pyramidal cells, interareal activation sequences, and changes
in axonal and dendritic cable properties due to myelination variations
(Meeren et al., 2002). Further, in addition to corticothalamic delay,
changes in axonal conductance and decay time (anesthesia induced)
have also been reported as a putative cause for reduced alpha (or
dominant) frequency (Ching et al., 2010; Englehardt et al., 1991;
Nunez, 1995). Additionally, changes in the dendritic decay rate have
also been shown to affect alpha frequency (Robinson et al., 2001b). As
no longitudinal changes were observed in the dendritic decay
rate parameter, changes in the corticothalamic delay parameter seem
the most viable candidate for reduction in alpha frequency following
meditation training. However, it is unclear as towhy an increase in pos-
terior corticothalamic delay might occur with intensive meditation
training.

One conjecture regarding the functional consequences of the in-
creased corticothalamic delay is to facilitate sustained attention on in-
coming sensory or tactile stimuli with increased meditative expertise.
This idea is based upon the argument that an increased delay will facili-
tate a subsequent increased asynchrony between the firing rates of the
cortical and thalamic cells, potentially disrupting ongoing corticothalamic
synchronization. In line with this argument, similar asynchronous inputs
have been shown to be responsible for weakening previously strength-
ened inputs in the hippocampal cells in rats (Csicsvari et al., 2003;
Huerta and Lisman, 1995). Given the regulatory role of TRN, the transient
disruption of corticothalamic synchronization may enable increased
effective SRN-based activation of cortex and thus modulate the initial
processing of sensory inputs.
Stability analysis

Nonlinear instabilities or bifurcations in large-scale dynamical sys-
tems have been of wide interest to computational scientists. A sudden
change in large-scale dynamical systems activity is considered to be a bi-
furcation (e.g., a transition from laminar to turbulent fluid flow is a com-
mon example of such change; Breakspear et al., 2006). Due to their
disruptive nature for brain function, it is especially important to study
such instabilities in neural dynamics (e.g., onset of seizure; Le Van
Quyen et al., 2003; Mirowski et al., 2009). Robinson et al. (2002) exten-
sively explored the dynamics of their R-MFM approach and observed
that themodel had only a fewkey instabilities that result in nonlinear be-
haviors. Of these instabilities, the first two (known as slow-wave and
theta) lead to spike-wave nonlinear limit cycles in the slow-delta and
fast-theta ranges, respectively. The other two instabilities (spindle and
alpha peak) lead to a limit cycle with frequencies in alpha band range
(~10 Hz). The spindle instability is of particular interest to our work as
it originates in the intrathalamic loop (where we observed effects of
meditation training) and spreads to the cortex due to thalamocortical
projections (Breakspear et al., 2006; Robinson et al., 2002).

Using the reduced 3-d stability space, we observed that participants
in both retreat groups had a significantly lower z-coordinate
(representing intrathalamic stability) following training. This suggests
that retreat participants' modeled brain state was further below the
intrathalamic instability boundary (or tent's surface in z direction)
after training. This decrease in the z-coordinate value is likely due to
the observed decrease in the model's intrathalamic gain after training
(see the section Stability analysis).

Although the participants in this study were neurologically healthy
individuals, increased distance from the modeled intrathalamic insta-
bility boundary due to meditation training provides a fascinating moti-
vation to further study shamatha and related focused-attention
meditation as part of potential treatment strategies for epileptic pa-
tients. Recent reviews of psychobehavioral interventions for persons
with epilepsy conceptualize interictal periods as a time-varying pattern
of changing proximity to seizure boundary conditions (Tang et al.,
2014). Thus, even modest improvements in stability, such as those re-
ported here, may become critical in delaying or preventing seizure
onset when an individual approaches the seizure boundary.

Connectivity in TRN layer

To model intra-TRN connectivity, a novel computational procedure
allowed us to explore the connectivity structure without fitting a myri-
ad of additional model parameters. Using this method, a clear
frontoparietal functional division was observed in the modeled TRN
layer. Interestingly, the discovery of a functional division in themodeled
TRN layer is in line with animal studies where the afferent cortical con-
nections to TRN layer are shown to be topographically structured
(Zikopoulos and Barbas, 2007). Although this functional division was
stable across time points, an increase in anterior–posterior between-
cluster connectivity associated with meditation training was observed
in both retreat groups. This effect was only evident for the post time
point in RG1 and for themiddle time point in RG2. One plausible reason
for lack of consistency across retreats could be the small sample size of
our study.

Using animal models, it has been well established that the cortical
and thalamic afferents to the TRN are topographically organized
(Crabtree and Killackey, 1989). Along the rostrocaudal axis,
centroposterior loci in TRN receive afferents from the somatosensory,
visual, and auditory cortices and their associated thalamic relay nuclei.
Recent work by Zikopoulos and Barbas (2006), however, has provided
novel evidence of strong prefrontal projections in the anterior sector
of TRN. These authors have claimed that these prefrontal projections, al-
though concentrated in the anterior TRN sector, are widespread and
overlap extensively with the afferent projections from other cortical
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and thalamic pathways in the TRN (Zikopoulos and Barbas, 2006). Addi-
tionally, the overlap between prefrontal and other cortical/thalamic
projections in the TRN is thought to contribute to attentional selection
of salient stimuli and attentional regulation (Zikopoulos and Barbas,
2007).

In light of this research, it could be speculated that the increase in
connectivity between the anterior and posterior clusters in themodeled
TRN layer following meditation training could be due to increased pre-
frontal projection strength on the TRN layer. This may reflect a putative
mechanism for facilitating sustained attention on the incoming sensory/
tactile breath stimulation. In this same cohort of participants, enhanced
attention regulation as evidenced by improved response inhibition
(presumed to be a frontally-mediated component of executive control)
was observed followingmeditation training (Sahdra et al., 2011). Utiliz-
ing the ER-MFM model extension, future research can investigate this
hypothesis by modeling EEG data collected while participants are en-
gaged in an attention regulation task.

Limitations

Several limitations should be discussed. Our modeling approach was
restricted to cortico-cortical, cortico-thalamo-cortical, and intrathalamic
interactions. While these interactions are known to efficiently capture
the general context of arousal and attention regulation, activity in other
subcortical areas (e.g., the hippocampus and amygdala) are also known
to be modulated during meditation practice (for a recent review, see
Fox et al. (2014)). Future studies could examine whether the approach
taken here can be adapted to include additional subcortical areas and as-
sociated interactions. This model may therefore be further extended to
better understand the hypothesized mechanisms underlying shamatha
and FA meditation practice and training.

Several factors unrelated tomeditation training could have also con-
tributed to the present findings. First, both retreats took place in a re-
mote wilderness setting, where participants spent a majority of their
time in solitary meditation. The environmental and acute behavioral
changes associated with substantial time in solitary meditation likely
exerted a number of non-specific effects. These could have manifested
as observed physiological changes that were reflected in the model pa-
rameters. Second, the amount of motivation may not have been
matched between the initial retreat and wait-list control groups, as
the participantswere aware of their group assignment prior to receiving
meditation training. Although our wait-list design likely addressed sev-
eral important design limitations of prior research on intensive medita-
tion, future investigations should attempt to better account for various
social, motivational, and environmental factors by using active control
conditions or by comparing training periods of differing lengths.

Other limitations of this work come from the sparseness of cortical
sampling (i.e., number of EEG sensors used and modeled). One future
avenue of research could be to concurrently use high spatial resolution
neuroimaging modalities (e.g., fMRI) for better modeling and under-
standing of neural data collected during meditation practice.

Another potential limitation concerns the quantification of IAF
values. To calculate IAF values for each participant, we employed the
widely used power-weighted (or center of gravity) method to deter-
mine mean alpha frequency across all channels (Klimesch, 1999). This
power-weighted method provides an advantage over visual inspection
based methods to find the peak alpha frequency: in cases where the
EEG spectra have multiple peaks or are flat in the alpha range, power-
weighted methods better reflect the central tendency of alpha power
and are more representative of the underlying activity (Goljahani
et al., 2012). However, to calculate power-weighted IAF, a
predetermined interval of alpha frequencies is required. Defining such
a priori intervals can lead to biased estimates, particularly when partic-
ipants have a very high or low alpha peak. Thus, new automated
methods, based on regression (Chiang et al., 2008) and channel selec-
tion (Goljahani et al., 2012) have been recently proposed. Future work
is thus required to carefully examine how the calculation of IAF using
novel methods may influence the assessment of IAF values in long-
term meditators.

Lastly, it is important to note that the modeling approach presented
here, although widely accepted in the extant literature related to EEG-
based computational models, is still very approximate in nature and is
based on a number of assumptions. These assumptions are required to
generate models that are computationally practical and tractable. We
argue that such modeling approaches, while not mechanistically
accurate,may still enable progress in understanding complex brain phe-
nomenon. By simulating a complex phenomena (or associated neuro-
physiological correlates) based on an initial formulation, the goal of
such approaches is to generate novel hypotheses that may motivate fu-
ture research studies and data collection, and in turn refine the model
and its underlying assumptions. Such a process implements the classic
cycle of theory development, testing, and revision to advance our
understanding.

Conclusions and future work

We present the first computational model of neurophysiological
changes during shamatha and related FA meditation, which advances
our previous work investigating scalp-recorded EEG during meditation
by examining the putative role of corticothalamic and intrathalamic in-
teractions in observed longitudinal changes in cortical activity associat-
ed with intensive meditation training. Our computational approach
offers several testable hypotheses that couldmotivate the incorporation
of shamatha and FAmeditation in novel treatment approaches. Specifi-
cally, the observed decrease in intrathalamic gain parameter following
training serves to motivate further study of shamatha and FA medita-
tion as a potential treatment approach for individuals with ADHD,
whereas increasedmodel stability after trainingmotivates further anal-
ysis of the potential efficacy of shamatha and FA meditation practice as
part of treatment strategies for neurological disorders (e.g., epilepsy).
Finally, a similar modeling approach can be applied to EEG data obtain-
ed during performance of cognitive tasks so that changes in model
parameters can be directly related to training-related changes in
measureable task performance.
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