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Coordinated variations in brainmorphology (e.g., cortical thickness) across individuals have beenwidely used to
infer large-scale population brain networks. These structural correlation networks (SCNs) have been shown to
reflect synchronized maturational changes in connected brain regions. Further, evidence suggests that SCNs, to
some extent, reflect both anatomical and functional connectivity and hence provide a complementary measure
of brain connectivity in addition to diffusionweighted networks and resting-state functional networks. Although
widely used to study between-group differences in network properties, SCNs are inferred only at the group-level
using brainmorphology data from a set of participants, thereby not providing any knowledge regarding how the
observed differences in SCNs are associated with individual behavioral, cognitive and disorder states. In the
present study, we introduce two novel distance-based approaches to extract information regarding individual
differences from the group-level SCNs. We applied the proposed approaches to a moderately large dataset
(n=100) consisting of individualswith fragile X syndrome (FXS; n=50) and age-matched typically developing
individuals (TD; n = 50). We tested the stability of proposed approaches using permutation analysis. Lastly, to
test the efficacy of our method, individual contributions extracted from the group-level SCNs were examined
for associations with intelligence scores and genetic data. The extracted individual contributions were stable
and were significantly related to both genetic and intelligence estimates, in both typically developing individuals
and participants with FXS. We anticipate that the approaches developed in this work could be used as a putative
biomarker for altered connectivity in individuals with neurodevelopmental disorders.

© 2015 Elsevier Inc. All rights reserved.
Introduction

Large-scale population brain networks can be constructed by exam-
ining coordinated variations in the brain morphometric data (Bassett
et al., 2008; Bernhardt et al., 2011; Chen et al., 2011; Fan et al., 2011;
Guye et al., 2010; He and Evans, 2010; Junfeng Sun, 2012; Lerch et al.,
2006; Lv et al., 2010; Raj et al., 2010; Sanabria-Diaz et al., 2010; Wu
et al., 2012; Zhou et al., 2011). These structural correlation networks
(SCNs) have been shown to reflect synchronized maturational changes
in brain regions (Alexander-Bloch et al., 2013a,2013b). Further, evi-
dence suggests that SCNs may reflect both anatomical and functional
connectivity (Alexander-Bloch et al., 2013a), thereby providing a com-
plementary measure of connectivity in addition to diffusion-weighted
and resting-state functional networks. Previous studies have shown
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that alterations in SCNs were associated with aging (Wu et al., 2012),
multiple sclerosis (He et al., 2009), Alzheimer’s disease (He et al.,
2008), schizophrenia (Bassett et al., 2008), adult/pediatric cancers
(Hosseini et al., 2012a,2012b), reading difficulties (Hosseini et al.,
2013), and epilepsy (Bernhardt et al., 2011).

While previous work has related individual functional connectivity
with behavioral performance (van den Heuvel et al., 2009), very few
studies have attempted to estimate individual differences in anatomical
connectivity directly from the T1-weighted MR images. Recently, a se-
ries of innovative methods have been developed to derive information
about single-subject anatomical connectivity from the respective sub-
ject’s T1-weighted MR images (Batalle et al., 2013; Raj et al., 2010;
Tijms et al., 2012; Zhou et al., 2011). For example, Tijms et al (2012)
have proposed a cube-based correlation approach to extract single-
subject anatomical connectivity from the respective subject’s T1-
weighted MR images. In this cube-based approach, the graph nodes
were represented as small 3D cubes in the graymatter and the strength
between nodes was computed by estimating intra-cortical similarities
in the gray matter morphology (e.g., thickness measure). Similarly, in
another study, individual anatomical connectivity was estimated from
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Table 1
Group-wise participant characteristics.

Fragile X Syndrome
(FXS)

Typically developing
(TD)

Number of participants 50 (30 females) 50 (30 females)
Age in years (S.D.) 17.53 (2.8) 17.66 (2.65)
Full Scale IQ (S.D.) 72.34 (19.8) 119.40 (14.4)
%FMRP (S.D.) 40.17 (26.9) -
Mean brain volume (S.D.) 1258.884 (121.82) 1254.837 (100.15)
Mean cortical thickness (S.D.) 2.84 (0.142) 2.75 (0.114)
Subcortical gray volume (S.D.) 200.85 (17.8) 200.25 (17.7)

275M. Saggar et al. / NeuroImage 120 (2015) 274–284
T1-weighted MR images using Gibbs probability models (Raj et al.,
2010). These previous studies have demonstrated that the extracted in-
dividual networks from T1-weighted images show “small world” prop-
erties (Tijms et al., 2012) and can be used to improve classification
between patient populations and healthy controls (Raj et al., 2010;
Zhou et al., 2011). More recently, Batalle et al. (2013) applied the nor-
malized cube-based correlation approach to extract individual net-
works in a pediatric population and demonstrated that the extracted
graymatter connectivity at the individual level can be related to individ-
ual differences in behavioral functioning (Batalle et al., 2013).

Although innovative methods have already been proposed to derive
information about single-subject anatomical connectivity from their T1-
weighted images, it is unclear whether individual differences in ana-
tomical connectivity can be directly extracted from the group-level
SCN itself. Such extraction would allow for directly relating observed
group-level differences in the SCN to individual differences in behavior
(and/or genetic measures). Thus, to extract individual contribution to-
wards anatomical connectivity from group-level SCNs, we introduce
two distance-based approaches that can be used as putative biomarkers
for altered connectivity in individuals with neurodevelopmental disor-
ders. The first approach is based on the leave-one-out (LOO) strategy,
where an individual’s contribution is estimated by leaving that individ-
ual out and re-estimating group-level SCN. Similar approaches have
been used previously for cross-validation inmachine-learning literature
(Bishop, 2006). The second metric is designed for clinical populations,
where the contribution of an individual with a disorder is extracted by
adding his/her morphometric data to a set of control participants and
by re-estimating changes in SCN due to such addition (henceforth re-
ferred to as Add-One-Patient (AOP) approach). The proposed ap-
proaches were applied to both global structural correlation matrices as
well as to topological (or network) properties extracted from the SCNs.

We applied the proposed approaches to morphometric data from a
moderately large group of participants with fragile X syndrome (FXS)
and an age-matched group of typically developing participants (TD).
Fragile X syndrome results from a trinucleotide CGG repeat expansion
(locus Xq27.3), leading to hypermethylation of the fragile Xmental retar-
dation 1 gene (FMR1) promoter region and reduced levels of FMR1 pro-
tein (FMRP) (Verkerk et al., 1991). The percentage of FMRP is critical
during neurodevelopment, as it is involved in regulating synaptic plastic-
ity and dendritic pruning (Harlow et al., 2010). Reduced levels (or per-
centage) of FMRP has been associated with intellectual disability (Reiss
and Dant, 2003), cognitive and behavioral impairments (Van der Molen
et al., 2012), and high prevalence of autism symptomatology (Gabis
et al., 2011). Further, FXS is linked with altered structural and functional
brain connectivity (Haas et al., 2009; Hall et al., 2013; Wang et al., 2012).

Stability analysis was performed to examine the robustness of pro-
posed approaches with increasing group size. Further, to assess the effi-
cacy of these approaches, extracted individual contributions were
tested for their association with intelligence scores in both FXS and TD
groups and with percentage of FMRP in individuals with FXS. Addition-
ally, we estimated how the morphometric properties of each cortical
and subcortical region influences the extracted individual contributions
towards group-level SCN. Estimating such regional influences, especial-
ly in patient populations, could provide confirmatory validity to our
proposed approaches because FXS is widely associated with significant
differences in regional morphometric properties (e.g., larger and abnor-
mal shape of caudate nuclei volume; Lightbody and Reiss, 2009; Peng
et al., 2014).

Materials And Methods

Participants

Fifty participants with a confirmed genetic diagnosis of FXS (30
females; mean age = 17.61 years, S.D. = 2.76) and an age-matched
group of 50 typically developing (TD) participants (30 females; mean
age = 17.66 years, S.D. = 2.65), all between the ages of 12 and
23 years were recruited. Diagnosis for individuals with FXS was con-
firmed using the Southern Blot DNA analysis (Kimball Genetics, Denver,
CO). The two groups were matched for age (t(97) = 0.11, p = 0.913),
but the full scale IQ (Table 1; see section 2.2 for administration details)
was significantly different between the two groups (t(96) = 13.55, p b

0.0001). Typically developing participants were excluded for a history
of any known genetic condition, premature birth, low birth weight, or
any learning, developmental, psychiatric, neurological ormedical disor-
der. All participants were free from MRI contraindications. Participants
were recruited across the United States and Canada through advertise-
ments, referrals, and word of mouth. Participants and/or their parents
gave written informed consent and assent to participate in the study.
The Stanford University’s Institutional Review Board approved all
protocols.

Intellectual functioning

General intellectual functioning (IQ) was assessed via the Wechsler
Adult Intelligence Scale (WAIS-III) (Wechsler, 1997) or Wechsler Ab-
breviated Scale for Intelligence (WASI) (Wechsler, 1999) for partici-
pants 17 years and older and the Wechsler Intelligence Scale for
Children (WISC-III) for participants younger than 17 years (Wechsler,
1991). For participants with FXS all IQ assessments were completed
within 6 months of MRI imaging and for the TD group all IQs were
assessed within 21 months of scanning. We used the full-scale intelli-
gence quotient (FSIQ) as a measure of intellectual functioning for all
participants. The mean FSIQ for participants with FXS was 72.63
(S.D. = 19.93; Range = 44-124) and for TD participants 119.56
(S.D. = 13.96; Range = 85-147).

2.3. Genetic assessments (quantification of FMR1 protein)

A mutation of the fragile X mental retardation 1 (FMR1) gene, asso-
ciated with trinucleotide CGG repeat expansion, is considered to be the
cause of FXS (Lightbody and Reiss, 2009). Typically developing individ-
uals have around 29-30 CGG repeats in the FMR1 gene.When the size of
repeat expands beyond 55, but is under 200, then the individual is con-
sidered to be a carrier of the fragile X pre-mutation. However, when the
size of CGG repeats crosses the 200mark, hypermethylation of the pro-
moter region of gene is very likely to occur and result in transcriptional
silencing of the FMR1 gene, which in turn limits the production of FMR1
protein (FMRP; Bhakar et al., 2012; Lightbody and Reiss, 2009). This is
referred to as the “fullmutation”. Reduced levels of FMRPnegatively im-
pact brain development and function (Fung et al., 2012). Thus, the per-
centage of FMRP available in individuals with FXS provides a potential
genetic biomarker of disease severity. We estimated FMRP percentage
for each individual in the FXS group based on the percentage of periph-
eral lymphocytes containing FMRP as assessed by immunostaining
techniques (Willemsen et al., 1997). The mean FMRP percentage for
the FXS group was 40.89 (S.D. = 26.79). In case of typically developing
participants the FMRP percentage is assumed to be 100 and hence we
did not assess FMRP percentage in this group.
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Image acquisition and FreeSurfer data analysis

Anatomical T1-weighted images were acquired on General Electric
1.5 Tesla (Stanford University), in the coronal direction (repetition
time = 35 milliseconds, echo time = 6 milliseconds, flip angle = 45°,
slice thickness: 1.5–1.7 mm, in-plane resolution .9375 × .9375 mm,
and acquisitionmatrix=256× 192mm, 124 contiguous slices).We ad-
justed the slice thickness (range 1.5 mm-1.7mm) across participants to
insure coverage of the entire brain without increasing the number of
slices. This approach was utilized as an increase in number of slices
would have increased the scan time by an undesirable amount and
could have resulted in “wrap-around” and other unwanted image arti-
facts. Table 2 below provides information regarding the variation in
slice thickness across participants in each group. As evident, a large pro-
portion of the participants were scanned at 1.5 mm slice thickness. A
chi-square test was used to assess if there was a systematic difference
in slice thickness variation between groups. No significant differences
were found between the groups (p = 0.58).

It is important to note that the data presented in this study were
drawn from a larger longitudinal study (Bray et al., 2011). We selected
scans from the longitudinal study using the following criterion –
(a) appropriate age range, (b) met strict image quality requirements
and (c) were free from artifacts induced by subject motion, blood flow
or wraparound. Approximately 19% of scans in the larger study were
unusable due to such artifacts.

The FreeSurfer toolkit (http://surfer.nmr.mgh.harvard.edu/) was
used to parcellate the brain into 86 gray matter regions (68 cortical,
16 subcortical and 2 cerebellar regions). In this work, we used morpho-
logical measurement of thickness for cortical regions and of volume for
subcortical regions and cerebellum. The technical details of these proce-
dures are described elsewhere (Dale et al., 1999; Fischl et al., 1999;
Hosseini et al., 2013). Briefly, this processing analysis pipeline includes:
(a) removal of non-brain tissue using a hybrid watershed/surface
deformation procedure (Ségonne et al., 2004); (b) automated Talairach
transformation; (c) segmentation of the subcortical white matter
and deep gray matter volumetric structures (Fischl et al., 2004);
(d) intensity normalization (Sled et al., 1998); (e) tessellation of the
gray matter white matter boundary; (f) automated topology correction
(Ségonne et al., 2007); and (g) surface deformation following intensity
gradients to optimally place the gray/white (main) and gray/cerebro-
spinal fluid (pial) borders at the location where the greatest shift in
intensity defines the transition to the other tissue class (Fischl and
Dale, 2000).

Once the cortical models were complete, regional volumes were
extracted by surface inflation (Fischl et al., 1999), registration to a
spherical atlas which utilizes individual cortical folding patterns to
match cortical geometry across participants (Fischl et al., 1999), and
parcellation of the cerebral cortex into units based on gyral and sulcal
structure (Desikan et al., 2006). Themain and pial surfaceswere visually
inspected, and where needed, appropriate manual corrections were
performed as per the Freesurfer Tutorial (http://surfer.nmr.mgh.
harvard.edu/fswiki/FsTutorial). All raters who performed manual
editing of FreeSurfer derived datawere trained to achieve inter-rater re-
liability of ≥0.95 (intraclass correlation coefficient) with gold-standard
Table 2
Variation in slice thickness across participants in both groups (typically developing or TD
and participants with FXS).

Slice Thickness
(in mm)

Group Total (n = 100)

TD (n = 50) FXS (n = 50)

1.5 42 38 80
1.6 7 11 18
1.7 1 1 2
datasets for all regions of interest. A similar approach has been used pre-
viously (Hosseini et al., 2013).

Cortical thicknesses, and cerebellar and subcortical volumes were
corrected for mean cortical thickness, total cortical gray matter volume,
and total subcortical gray matter volume, respectively, in addition to
age, using linear regression (Hosseini et al., 2013). The residuals of
these analyses were subsequently used for constructing structural cor-
relation matrices. Normalizations by correcting global measures in this
manner remove the individual differences in morphometric measures
affected by overall brain size and are a prerequisite for construction of
structural correlation networks (Bernhardt et al., 2011; Fan et al.,
2011; Hosseini et al., 2012a).

Structural correlation matrix

Data from all the brain regions from a set of participants were used
to construct morphology-based structural correlation networks. For
each group, a b number of regions N x b number of regions N correlation
matrix R was generated with each entry Rij defined as the Pearson cor-
relation coefficient between the extracted residuals of regions i and j.
For later analyses, we used the structural correlation matrix R to repre-
sent weighted connectivity between regions.

Graph theory metrics

The network properties of structural correlation matrix were esti-
mated using standard graph theory procedures, as implemented in the
Brain Connectivity Toolbox (http://www.brain-connectivity-toolbox.
net). Positive weighted structural correlation matrices were used to ex-
tract various graph theoretical properties. We restricted the analysis in
this paper to twomain network properties, i.e., integration and segrega-
tion (Rubinov and Sporns, 2010). For network integration,we estimated
characteristic path length (L) of each network, which is defined as the
average shortest path length between all pairs of nodes in the network.
Given that our participant sample was in the developmental age range
of late childhood to early adulthood, to assess the developmental chang-
es in anatomical connectivity (especially, synaptic pruning; Gogtay
et al., 2004) we also included a measure of graph diameter (D). A
graph’s diameter is usually defined in terms of maximal eccentricity of
the graph, where eccentricity of each node is the maximal shortest
path length between a node and any other node and the diameter is
the maximum eccentricity of the whole graph/network (Hage and
Harary, 1995). For network segregation, we estimated clustering coeffi-
cient (C) of each network, which is defined as the proportion of nearest
neighbors of a node that are connected (Rubinov and Sporns, 2010).

Measures for individual contribution

Two novel distance-based approaches were proposed to extract in-
dividual contribution from the group-level SCNs. The proposed ap-
proaches were run separately on the global structural correlation
matrices and on three graph theory based network properties. By
extracting individual contribution from the overall structural correla-
tionmatrix itself, wewere able tomeasure the impact of each individual
on the overall configuration of the network,while by extracting individ-
ual contribution on graph theoretical properties we were able to mea-
sure the impact of each individual on specific network properties.

The first metric was based on the leave-one-out (LOO) approach,
where within each of the groups (FXS and TD), every participant Pj
was left out to estimate his/her individual contribution (Fig. 1A). The
contribution was estimated by finding similarity between the global
structural correlation matrices before and after each participant was
left out using the Mantel’s test statistic. Mantel’s test (Mantel, 1967)
was designed to evaluate similarity between correlation matrices. Like
the Pearson correlation (r) value,Mantel’s test statistic value also ranges
from -1 (negative related) to 1 (positive related), where a value closer

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial
http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial
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Fig. 1.Theproposed approaches to extract individual contribution at theglobal level of structural correlationmatrices and at the level of graph theorymetrics. (A)Using the Leave-One-Out
(LOO) approach, where within each group (FXS and TD), each participant Pj was left out to estimate his/her contribution. (B) Using the Add-One-Patient (AOP) approach, where the
contribution of a patient participant is derived by computing the distance between a correlationmatrix (or graphmetric) derived from typically developing participants and a correlation
matrix (or graph metric) derived from a new group that includes all typically developing participants and the patient Pj.
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to 0 indicates null or no relationship. Mantel’s test statistic is based on a
cross-product term:

z ¼
Xn

i¼1

Xn

j¼1

xi jyi j ð1Þ

and is normalized as,

Mantel Test r X; Yð Þ ¼ 1
n−1

Xn

i¼1

Xn

j¼1

xi j− x
sx

:
yi j−y
sy

ð2Þ

where x and y are variables from X and Y correlation matrices, n is the
number of elements in each matrix, and the sx and sy are standard devi-
ations for X and Y correlation matrices. Thus, using the LOO approach,
the contribution of participant Pj to the global structural correlation
matrix (R) was quantified as,

ICLOO
P j

¼ 1−Mantel Test r RPi¼1 ::N ; RPi¼1 :: N−1ð Þ; i≠ j

� �
ð3Þ

where N represents total number of participants in each group. It
is noteworthy that a Mantel’s test value closer to 1 indicates high
similarity between the twomatrices and hence depicts low contribu-
tion from the participant Pj and vice versa. Thus, the individual con-
tribution is defined as one minus the Mantel’s test statistic. Lastly, to
determine the position of a participant’s individual contribution
within his/her group, we also report the mean group contribution
in each plot (using the symbol μ and a bold line-marker on the y-
axis; Fig. 2). This information can help estimate whether a given par-
ticipant is contributing more or less towards structural correlations
than the other participants in his/her group. Further, by comparing
with average group contribution, we can also infer whether contrib-
utingmore than group average leads to better (or worse) intellectual
functioning and/or genetic scores.

Using the LOO approach, we also estimated the individual contribu-
tion to graph properties by leaving each participant Pj out; this was
accomplished by subtracting the graph metrics calculated using all
participants other than Pj from the graph metrics calculated using all
participants including Pj (Fig. 1A).

The secondmetric was specifically designed for clinical populations.
In this metric, the contribution of patient Pj is derived by computing the
distance between a correlation matrix derived from typically develop-
ing participants (RTD) and a correlation matrix derived from a new
group that includes all typically developing participants and the patient,



Fig. 2. Relations observed between extracted contributions and behavioral/genetic measures. The symbol μ and bold line-marker on y-axis, in A–D, depicts group-mean of individual con-
tribution and it is shown to provide information regarding position of each individual’s contributionwith respect to the groupmean. Full datasetwas used for these correlations and Spear-
man rank correlation values (rho) are reported.
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Pj, i.e.,RTDþP j (Fig. 1B). Thus, using this add-one-patient (AOP) approach,
the contribution of a participant with the disorder, Pj to the structural
correlation matrix was quantified as,

ICAOP
P j

¼ 1−Mantel Test r RTD; RTDþP j

� �
ð4Þ

From this perspective, a Mantel’s test value closer to 1 indicates high
similarity between the twomatrices and hence depicts low contribution
from the participant Pj. As noted above, the individual contribution is
defined as one minus the Mantel’s test statistic. Lastly, to determine
the position of participant’s individual contribution in their group, we
also report the mean group contribution in each plot (using the symbol
μ and a bold line-marker on the y-axis; Fig. 2).

Using the AOP approach, the contribution of a patient partici-
pant Pj to the three network properties was also estimated by
subtracting graph metrics calculated using all TD participants and
Pj from the graph metrics calculated using all TD participants only
(Fig. 1B).
Regional contribution to individual differences in the structural
correlation matrix

To find the regions that contributed most to the individual differ-
ences in the correlation matrix for each group, we calculated column-
wise absolute sumof the differencematrix for each of the two proposed
approaches. Thus, regional contribution for participant Pj using the LOO
approach was defined as,

RCLOO
P j

¼
X

colwise

RPi¼1 ::N−RPi¼1 :: n−1ð Þ;i≠ j

���
��� ð5Þ

where RC represents a vector containing the regional contributions
for each of the 86 regions. Similarly, for the AOP approach the regional
contribution for participant Pj was defined as follows,

RCAOP
P j

¼
X

colwise

RTDþP j
−RTD

���
��� ð6Þ
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Relations between individual contribution and
behavioral/genetic assessments

Spearman’s correlation (rho value) was used to assess relations be-
tween extracted individual contribution and behavioral measurements
of intellectual functioning as well as genetic assessment of FMRP per-
centage. Alpha value of p = 0.05 was used to find significant correla-
tions. As pointed out in previous research (Wilcox and Muska, 2001),
the presence of heteroscedasticity (unequal variability in predicted
values across the range of values of a predictor) can make a correlation
significant even though the variables are not truly correlated. Thus, to
test whether the correlations between individual-contribution and as-
sessments ismerely due to heteroscedasticity, we employed robust cor-
relations based on percentile bootstrap confidence intervals (Cyril and
Pernet, 2012).
Stability analysis

One potential concern regarding the proposed approaches is that as
the number of participants in a given group increases, the overall contri-
bution of an individual participant (either left out or added to a control
group) might decrease and potentially approach zero with particularly
large datasets (NNN 100). Thus, it is clear that with the increase in size
of the base group (i.e., a group to which either the individual was left
out or added to), the magnitude of individual contribution drops. It is
not clear, however, how such a drop in individual contribution magni-
tude affects (if at all) the ability of individual contributions to relate
with the behavioral and/or genetic assessments. To address this issue,
several permutation analyses were run for both LOO and AOP ap-
proaches with different base group sizes (range: 3 to maximum group
size). Thus, we extracted individual contributions of each participant
(in both groups: FXS and TD) for different base group sizes, where
base participants were selected using random selection with replace-
ment from their respective groups. Further, this procedure was repeat-
ed 100 times to obtain stable estimates for each base group size.
Altogether, this stability analysis was performed to examine variations
in (a) individual contributions for a range of base group sizes and
(b) correlation between individual contributions and behavioral/genet-
ic measures for each base group size.

A secondpotential concern, specific to the AOP approach, is to exam-
ine howmany TD participants are required to get stable estimates of in-
dividual contribution of participants with FXS. To perform such testing,
we randomly selectedM participants from the TD group, and calculated
correlations between AOP-based individual contribution to the struc-
tural correlation matrix extracted from the original set (N = 50) of TD
participants and from different size subsets (M=2,3,…, 50) of TD par-
ticipants. To get stable estimates, the random selection and correlation
procedure was repeated 1000 times for each subset size (M).
Results

After extracting each participant’s contribution to overall connec-
tivity (i.e., structural correlation matrix) and to individual network
properties (i.e., using three graph theorymetrics), we related these con-
tributions with intelligence scores and genetic assessments (in FXS
group only). We also examined the regional contribution to individual
differences in both the LOO and AOP based approaches. Examining
such relations and regional contributions provided us an opportunity
to assess the criterion validity of the proposed approaches. Lastly, we
present results from stability analyses that were performed to
(a) examine robustness of proposed approaches as the number of par-
ticipants increases (using FXS and TD data); and (b) estimate the num-
ber of control TD participants required to estimate stable AOP-based
contribution for individuals with FXS.
Relations between individual contribution and intellectual functioning

For the FXS group, using both the LOO and AOP based approaches,
we found significant correlations between intelligence scores and in-
dividual contribution to the structural correlation matrix as well as to
the network properties. Specifically, using the LOO approach we
found significant negative correlation between the individual contri-
bution to the structural correlation matrix and intelligence scores
(rho(48) = -0.4562, p = 0.001; Fig. 2A). Similarly, using the AOP ap-
proach we found significant negative correlation between the indi-
vidual contribution to the structural correlation matrix and
intelligence scores (rho(48) = -0.5, p = 0.00016; Fig. 2B). Using
the mean group contribution across all participants in the FXS
group (as shown by the bold line-marker in Fig. 2A/B), it is evident
that participants who contributed more than the group average to-
wards global connectivity had lower intellectual functioning and
vice versa.

Among the three network properties, individual contribution ex-
tracted using the AOP approach towards the graph diameter was also
observed to positively relate with the intelligence scores (rho(48) =
0.37, p = 0.01; Fig. 2E). Thus, suggesting that positive contribution to-
wards graph diameter was associated with higher intellectual function-
ing in patients with FXS.

For the TD group, using the LOO approach, a significant positive
relation was also observed between the individual contribution to
the graph diameter and intelligence (rho(50) = 0.30, p = 0.036;
Fig. 2F). In line with the FXS group, positive contribution towards
graph diameter was associated with higher intellectual functioning
even in the TD group. No significant relation between contribution
to the structural correlation matrix and intelligence scores was ob-
served in the TD group.

Relations between individual contribution and genetic assessment

Using both the LOO and AOP based approaches, contribution to the
structural correlation matrix negatively related to the FMRP percentage
(rho(47) = -0.42, p = 0.003 and rho(47) = -0.40, p = 0.005, respec-
tively for LOO and AOP approaches; Fig. 2C and 2D). Using the mean
contribution across all participants in the FXS group (as shown by the
dashed line in Fig. 2C/D), it is evident that participants who contributed
more than the group average towards global connectivity had lower
percentage of FMRP and vice versa.

Regional contribution to the estimated individual differences

To find which brain regions contributed most to the observed indi-
vidual differences in structural correlationmatrix, we calculated region-
al contributions for each of the two proposed approaches (using Eqs. 5
and 6). The regional contributions using the LOO approach, within
each group, is shown in Fig. 3A. No single brain region stood out in con-
tributing towards the individual differences. Using the AOP approach,
however, the regional contributions of both left and right caudate nuclei
towards individual differences in the FXS groupwere three standard de-
viations above the mean regional contributions across all regions
(Fig. 3B). This finding suggests that individual differences contributing
to structural correlation in individuals with FXS was largely driven by
abnormal morphometric properties of the caudate nuclei.

Stability analysis

To examine the robustness of proposed approaches with increasing
number of participants, permutation analysis was run with different
group sizes. As expected, with increasing group size the individual con-
tribution decreased for both approaches (Fig. 4A and C). However, the
correlation between intelligence/FMRP scores and individual contribu-
tion increased asymptotically with increase in group-size and stabilized



Fig. 3. Regional contribution to individual differences in FXS and TD groups. (A) Using the LOO approach; and (B) using the AOP approach. Colored-band represents standard error of the
mean for each group. The dashed lines in (B) indicate groupmean and three standard deviations above themean, to show that the influence of left and right caudate is prominent towards
the extracted individual contribution using the AOP approach.

280 M. Saggar et al. / NeuroImage 120 (2015) 274–284
around n=25-30 (Fig. 4B andD). A similar pattern of reduction inmag-
nitude of individual contribution and asymptotic increase in correlation
between contribution and behavior was evident for both LOO and AOP
based approaches for graph theoretical properties. In sum, for both pa-
tient and healthy groups, individual contribution extracted using our
proposed approaches is associatedwith behavioral measures in a stable
and robust fashion.

In another set of stability analyses, we estimated the required size of
TD group for stable estimates of individual contribution extracted using
the AOP approach. Using permutation analysis, we found that a group of
twenty-five TD participants provide sufficiently stable estimates of
AOP-based individual contribution (Fig. 5).

To test the stability of our proposed approaches with much larger
datasets, we applied our methods to freely available data from the
Fig. 4. Stability analysis to test the effect of increase in number of participants on the magnitu
behavioral/genetic measures. As evident, across groups, with increasing number of participant
contribution and behavior/genetic scores asymptotically increases and stabilize around n =
value of individual contribution is used in A and C and the error bars represent standard error
individual contribution and behavioral/genetic measures.
Human Connectome Project (HCP; site: http://www.humanconnectome.
org).We used the HCP Q3 data release (N=226), whichwas processed
using FreeSurfer version 5.2. Similar to our FXS and TD data, we used
volumetric information for subcortical and thickness information for
the cortical structures. To correlate individual contributions with intel-
ligence, we used the behavioral performance score on progressive ma-
trices test (Bilker et al., 2012), also provided by the HCP Q3 release.
Supporting our observations for the FXS and TD data, results with the
HCP data showed a consistent pattern, i.e., although the individual con-
tribution towards group-level SCN reduces in amplitude with increas-
ing group size, the correlation between individual contribution and
behavioral assessment remains stable at larger group sizes (stable esti-
mates were obtained for a group size of 25-30 participants and above;
Supplementary Fig. 3).
de of individual contribution and on the correlation between individual contribution and
s, the individual contribution exponentially decreases. However, the correlation between
25–30. Similar pattern was evident for the network properties (e.g., diameter). Absolute
of the mean. Spearman rank correlation (rho) was used to estimated correlation between

http://www.humanconnectome.org
http://www.humanconnectome.org


Fig. 5. Number of TD participants required for stable estimation of individual contribution based on AOP approach for all participants in the FXS group. Graphwas generated by randomly
selecting subsets (of different size M) from TD participant pool. Repeating this random selection process 1000 times generated the error-bars on the graph. The error bars represent
standard error of the mean. Y-axis depicts Spearman rank correlation (rho) values.
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Heteroscedasticity analysis

To test whether the correlations between individual-contribution
and clinical variables of interest is merely due to heteroscedasticity,
we employed robust correlations based on percentile bootstrap confi-
dence intervals (Cyril and Pernet, 2012). As shown in the Supplementa-
ry Fig. 1 and Supplementary Table 1, all the observed correlations
remain significance (p b 0.05) after controlling for heteroscedasticity.

Effect of Sex on individual contribution and correlation to
behavioral/genetic measures

In a separate set of analyses, we regressed out sex from themorpho-
metric data (along with age and total cortical tissue thickness and sub-
cortical volume) and reconstructed the structural correlation matrices
(SCM). The individual contribution towards group-level SCN was then
derived from the revised SCMs and was correlated with behavioral/ge-
netic data in individuals with FXS and with TD participants. In the FXS
group, the individual contribution was observed to be correlated with
clinical assessments in the same manner as they were observed to be
correlated without regressing out sex as a nuisance covariate (Supple-
mentary Table 3). In the typically developing individuals, however,
after regressing out sex the correlation between individual contribution
to graph diameter and intelligence was not significant.

Discussion

Comparing group-level SCNs provides crucial information regarding
differences in structural connectivity between groups (Alexander-Bloch
et al., 2013a). To estimate significant group-level differences in connec-
tivity, researchers bin individuals from both groups into pseudorandom
sets and estimate the statistical significance using permutation statistics
(Hosseini et al., 2012a). However, these observed group-level differ-
ences cannot be related to clinical assessments from individual partici-
pants in each group. Thus, our current work was motivated by the
argument that relating observed differences in group-level connectivity
and network properties to clinical assessments could provide better
understanding of the underlying connectivity differences. We intro-
duced two novel distance-based approaches to extract individual con-
tributions to both overall connectivity and to network properties of
segregation and integration. The efficacy of the proposed approaches
was tested in two independent datasets. Additionally, the stability and
robustness of proposed approaches was tested using permutation
analysis.

One potential reason for the wide usage of SCNs lies in the fact that
the required morphometric data can be extracted from T1-weighted
images that are relatively straightforward to administer, acquire and ag-
gregate, at a large-scale, across imaging centers and populations. Other
neuroimaging modalities that provide information regarding anatomi-
cal connectivity, e.g., diffusion-weighted imaging (DWI), are generally
characterized by longer scan durations, low signal-to-noise ratio, and
higher susceptibility to head movement artifacts – making the investi-
gation of anatomical connectivity harder especially in clinical popula-
tions. Thus, our proposed methods to extract individual differences
from group-level SCNs could provide a relatively feasible and effective
biomarker for altered neurodevelopmental brain connectivity.

To test the efficacy of proposed approaches, we examined the rela-
tion between extracted individual contribution and intelligence scores
in both groups. In the FXS group, we found that the individual contribu-
tions to both structural correlation matrix as well as network diameter
were related to the intelligence scores. Using both the LOO and AOP ap-
proaches, the observed negative relations between the contributions to
global structural correlations and the intelligence scores suggest that
the participants with FXS who contribute higher than the group mean
have lower intelligence scores. Previous research suggests that severe
intellectual disabilities are frequently evident in individuals with FXS
(Garber et al., 2008). Further, in a recent study, Hall et al. (2013) ob-
served reduced resting-state functional connectivity in individuals
with FXS as compared with age- and IQ-matched control participants,
and within the FXS group reduced connectivity was linked with lower
IQ scores (Hall et al., 2013). Although structural correlations comple-
ment resting-state connectivity, previous research also suggests a con-
vergence in the results from these approaches (Hosseini and Kesler,
2013). Thus, cautiously building upon previouswork, the observed neg-
ative relation in our study suggests that higher alterations than the



282 M. Saggar et al. / NeuroImage 120 (2015) 274–284
group mean in global anatomical connectivity, in individuals with FXS,
are related to greater intellectual disability.

In addition to global structural correlations, individual contributions
to the graph diameter were also related with intelligence scores in the
FXS group, such that a positive contribution towards the graph diameter
was associatedwith higher intellectual functioning in patientswith FXS.
Interestingly, using the LOO approach in the age-matched TD partici-
pants, a similar positive relation between individual contribution to
graph diameter and intelligence scores was found. Graph diameter is a
measure of network integration and represents the maximum distance
between any two vertices (or regions) in the graph (Rubinov and
Sporns, 2010). In the current paper, the distance between two regions
is defined as the inverse of magnitude of correlation strength between
the two regions. Thus, a graphwith overall stronger correlation strength
between regionswould represent overall shorter distances between re-
gions and hence shorter graph diameter and path length. Interestingly,
shorter path length also indicates higher efficiency (in communicating
signal from one vertex to another) of a graph and previous work inves-
tigating the neural correlates of intelligence in adults has suggested that
both the integrity of connections (or white matter pathways) and the
overall network efficiency are important (Deary et al., 2010; Li et al.,
2009; van den Heuvel et al., 2009). Thus, it is unclear, why a positive
contribution to graph diameter, and potentially reduced efficiency, is
positively associated with intelligence in each of the two young cohorts
(age range 12-23 years) studied here.

One plausible conjecture could be that previous work associating
path length (and efficiency) with intelligence scores was limited to
adults. Thus, it is unknown whether a similar relation would be ob-
served in younger, still developing populations, mainly due to the fact
that the development of brain (and perhaps intelligence) involves a
substantial amount of synaptic pruning (Gogtay et al., 2004; Luo and
O'Leary, 2005; Paus, 2005; Paus et al., 2008). In a recent study, re-
searchers observed that in individuals aged 10 to 21 years, cortical
thickness in both left and right hemispheres decreases (speculated to
be due to synaptic pruning) over time. Further, this decrease is positive-
ly related to intelligence (Schnack et al., 2014). Theoretically, pruning
edges in a graph leads to increased diameter and eccentricity.
Boersma et al. (2013), using EEG data, observed a similar increase in
graph diameter and eccentricity with brain development (Boersma
et al., 2013). Taking these results and theory into account, we speculate
that the direct relation between a network’s graph diameter and intelli-
gence for our young cohort is potentially in linewith the current knowl-
edge of brain development and thereby provides putative criterion
validity to the proposed approaches.

Although Leow and colleagues have recently examined the anatom-
ical network properties in fragile X pre-mutation carriers (CGG repeat
between 55 and 200) using DWI (Leow et al., 2014), it is unknown
how the reduced percentage of FMRP in individuals with full mutation
FXS (CGG repeats N200) affects anatomical connectivity and graph
properties. In the present work, using both LOO and AOP approaches,
we observed a significant negative relation between FMRP percentage
and contribution to global structural correlations. Further, no relation
was observed between individual contribution to the three graph prop-
erties and FMRP percentage, thereby suggesting that reduced FMRP af-
fects anatomical connectivity at the global network configuration level.

In addition to relating individual contributions with behavioral and
genetic measures, we also examined how every cortical and subcortical
region influenced the contribution towards global structural correla-
tions. Using the LOO approach, no single region or set of regions stood
out as most contributory for either group. However, using the AOP ap-
proach, a clearly prominent influence was evident for bilateral caudate
regions in individuals with FXS. Several previous studies, across differ-
ent neuroimaging modalities, have shown abnormality in the size
and/or shape of the caudate nucleus that are specific to individuals
with FXS as compared to individuals with idiopathic developmental
delay, autism and typical development (Gothelf et al., 2008; Hazlett
et al., 2009; Hoeft et al., 2008; Peng et al., 2014). As the enlarged caudate
in FXS is thought to be contributory to the cognitive as well as specific
behavioral deficits associated with the syndrome (Lightbody and
Reiss, 2009), its prominent influence towards individual contribution
to global structural correlations provide conceptual support to the pro-
posed AOP approach.

To test the robustness and stability of proposedmetrics, two stability
analyses were performed. Using permutation analyses, we observed
that although the magnitude of individual contribution (across both
LOO and AOP approaches) decreases with increasing number of partic-
ipants, the relation between individual contribution and intelligence/
genetic assessments increases asymptotically and stabilizes around
base size of 25–30participants. Thisfinding suggests that theproposedap-
proaches are robust and stable in predicting and relating to behavioral/
genetic assessments. We also found that, on average, twenty-five control
participants provide stable estimation of contribution for patients using
the AOP approach.

To be consistent with the previous literature (He et al., 2006),
thickness was used as the cortical morphological feature to construct
structural correlation networks. For subcortical regions, volumetric
information was utilized. Similar approaches of mixing thickness for
cortical regions and volume for subcortical to construct structural corre-
lation networks have been previously published (Hosseini et al., 2013).
It is important to note that our proposed approaches should not be af-
fected by the choice ofmorphometricmeasure. To confirm this assump-
tion, using the same dataset, we constructed structural correlation
networks using cortical and subcortical volumes and derived individual
contribution using the proposed approaches. Similar, albeit weaker, re-
lations were observed between individual contribution and behavioral/
genetic metrics (Supplementary Fig. 2 and Table 2).

Although widely used, structural correlation based connectivity
models may not fully represent actual anatomical and/or functional
connectivity. Recent studies have observed moderate to strong conver-
gence between structural correlation based connectivity and anatomi-
cal/functional connectivity. For example, Gong et al. (2012) detected
presence of axonal fiber bundles between cortical regions for which a
structural correlation model had predicted strong connectivity (Gong
et al., 2012). Similarly, Alexander-Bloch and colleagues (2013) showed
that structural covariance in cortical thickness was related to the syn-
chronized maturational change between distributed cortical regions
and that the structural covariance networks were also associated with
functional connectivity and network organization (Alexander-Bloch
et al., 2013b). Based on the results of these and related studies, structur-
al correlations are believed to at least partially depict actual anatomical/
functional connectivity (Bernhardt et al., 2011; Wright et al., 1999;
Zhang and Sejnowski, 2000).

Although the proposed approaches were successfully applied to
both individuals with FXS as well as typically developing control partic-
ipants, it is important to note that the relations observed between indi-
vidual contribution and behavioral/genetic assessments in the FXS
group could be inordinately influenced by the X-linked nature of the
syndrome. That is, on the one hand we have males with FXS who have
a full “dose” of the disorder (due to single X-chromosome), whereas fe-
males with FXS only have half of a “dose” and hence are intermediate
between typically developingparticipants andmaleswith the fullmuta-
tion with respect to the brain anatomy and percentage of FMRP. Thus,
the observed relations between individual contribution and clinical as-
sessments could have been affected by the relatively larger variance as-
sociatedwith female participantswith FXS. However,whenweused sex
as a covariate, the observed relations between individual contribution
and behavioral/genetic measures were largely unaffected in individuals
with FXS.

Although novel methods are proposed in this paper, one potential
limitation of these methods is that they require a minimum number of
participants (n = 25–30) in order to extract stable individual differ-
ences. Further, no relations were observed between the extracted
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contribution and widely used graph theory metrics, i.e., characteristic
path length and clustering coefficient. The cause for lack of such rela-
tions is unclear. However, one plausible explanation could be the
young age group of our participants. Future research is required to
apply theproposed approaches to adult patient populations. Additional-
ly, our typically developing participant pool had an average IQ of about
119, which is more than one standard deviation above the mean value
of the normative sample (100). Thus, this high IQ sample may not be
representative of the population at large. Due to samplingwith replace-
ment, the correlation values reported in the stability analyses might be
marginally inflated. However, this potential inflation would not affect
the overall results regarding the robustness of our proposed approaches.
Lastly, as Spearman’s rank correlation was used here to non-
parametrically estimate statistical dependence between variables, it is
important to point out that in ranked correlations the magnitude of dif-
ference between two values can not be interpreted. However, this issue
does not limit our proposed approaches, as other correlations methods
(e.g., Pearson) could instead be used where necessary.

Altogether, we proposed two approaches to estimate individual
contribution to anatomical connectivity using group-based SCNs. We
anticipate that the methods developed here could be used as a putative
biomarker for altered neurodevelopment in clinical populations.
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