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Abstract. Functional near-infrared spectroscopy (fNIRS) is an optical imaging technique for
assessing human brain activity by noninvasively measuring the fluctuation of cerebral oxygen-
ated- and deoxygenated-hemoglobin concentrations associated with neuronal activity. Owing to
its superior mobility, low cost, and good tolerance for motion, the past few decades have
witnessed a rapid increase in the research and clinical use of fNIRS in a variety of psychiatric
disorders. In this perspective article, we first briefly summarize the state-of-the-art concerning
fNIRS research in psychiatry. In particular, we highlight the diverse applications of fNIRS in
psychiatric research, the advanced development of fNIRS instruments, and novel fNIRS study
designs for exploring brain activity associated with psychiatric disorders. We then discuss some
of the open challenges and share our perspectives on the future of fNIRS in psychiatric research
and clinical practice. We conclude that fNIRS holds promise for becoming a useful tool in
clinical psychiatric settings with respect to developing closed-loop systems and improving indi-
vidualized treatments and diagnostics. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.10.1.013505]
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1 Introduction

Psychiatric disorders have been cited as a global public health issue due to the high growth rate
of diagnosed individuals over the past decades.1 At present, the diagnosis of most psychiatric
disorders is based largely on associated descriptive symptoms and signs, lacking objective
biomarkers. Patients who are unable to accurately identify and express their symptoms may be
difficult to identify and diagnose. These circumstances may be even more common in children,
for whom case symptoms may need to be endorsed by parents or teachers (and reports are
sometimes inconsistent). This has prevented many individuals with psychiatric symptoms from
receiving appropriate treatment and, thus, experiencing better outcomes. Over the past decades,
the development of advanced neuroimaging technologies, such as functional magnetic resonance
imaging (fMRI), positron emission tomography (PET), and electroencephalography (EEG),
have enabled researchers to explore a wide range of brain functions with more objective mea-
sures and expand our current understanding of the underlying mechanisms associated with a
variety of psychiatric conditions.2–10

Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging method for
measuring and imaging the functional hemodynamic response to brain activity.11 In general,
fNIRS uses near-infrared light sources with wavelengths between 650 and 1000 nm that can
propagate several centimeters through the scalp and skull and spectroscopically interrogate the
fluctuated concentrations of oxygenated and deoxygenated hemoglobin, a metabolic process
corresponding to neuronal response within the brain.12,13 The past three decades have seen rapid
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growth of fNIRS as a valuable tool for studying normal brain function and its alteration in
diseases.14–18 Technically, fNIRS has several advantages over other commonly used functional
neuroimaging techniques; it is portable and resilient to motion artifacts, and it offers higher
spatial resolution and temporal resolution compared with EEG and fMRI, respectively.19–22

The flexible applicability and high ecological validity of fNIRS have made it particularly suitable
for probing the brain activity of participants, including pediatric populations, who may fear
stressful environments (e.g., MRI scanners) or display motor restlessness and anxiety symptoms
[e.g., autism spectrum disorder (ASD)]. In the present opinion article, we briefly summarize
state-of-the-art fNIRS research in psychiatry and share our perspectives on its future applicability
in psychiatric research and clinical practice.

2 Current Status of FNIRS in Psychiatry Studies

2.1 Applications of fNIRS in Psychiatric Disorders

Relative to other functional imaging techniques, fNIRS is advantageous for patients with
psychiatric disorders as it does not require subjects to be completely still, asleep, or sedated.
Functional NIRS also allows individuals undergoing imaging to interact freely with their
environment.23–26 Since the first fNIRS study on patients with schizophrenia was published
in 1994,27 fNIRS has increasingly been used to explore a number of psychiatric disorders,
including schizophrenia,28,29 depression,30,31 bipolar disorder,32,33 panic disorder,34 obsessive-
compulsive disorder,35 Alzheimer’s disease,36,37 ASD,38,39 attention-deficit hyperactivity disor-
der (ADHD),40,41 and posttraumatic stress disorder (PTSD).42 Figure 1 illustrates the growth of
fNIRS publications in psychiatric disorders for the past 30 years. Overall, the number of fNIRS
publications focused on psychiatric disorders has increased rapidly over the past 10 years
[Fig. 1(a)], possibly owing to the technological innovations in hardware instruments (e.g.,
time-domain NIRS44 and wearable NIRS45,46), signal processing (e.g., artifact removal47,48 and
real-time processing49), and paradigm design (e.g., hyperscanning24,25). As shown in Fig. 1(b),
the mainstream fNIRS literature covers a variety of psychiatric disorders, with depression,
dementia, schizophrenia, ASD, and ADHD accounting for the top five conditions of interest.

Fig. 1 Review of the literature. (a) The annual growth of publications in fNIRS-related psychiatric
research. (b) The distribution of major psychiatric disorders primarily studied in previous fNIRS
publications. (c) The distribution of relevant fNIRS publications by country. These statistics were
obtained from a scholar search website43 and Web of Science search with the keywords (“fNIRS”
or “NIRS”) and (“psychiatry” or “psychiatric”).
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In terms of regional distribution, Asia, America, and Europe, as represented by Japan and
China, the United States, and Germany, respectively, have made significant contributions to
bringing fNIRS methods into psychiatric research [Fig. 1(c)].

Regarding the role of fNIRS in psychiatric research, the focus of the literature is to ascertain
differences between patients with various types of psychiatric disorders and healthy controls,
with the aim of characterizing neural abnormalities potentially underlying the pathogenesis
of a condition. For example, many studies reported abnormal brain activation and reduced hemo-
dynamic responses in the frontal cortex of patients with schizophrenia when compared with the
healthy control group,50–52 suggesting frontal cortical abnormalities in this psychiatric disorder.
Aberrant cortical activation patterns in the frontal cortex were also widely reported using fNIRS
in affective disorders including major depressive disorder (MDD) and bipolar disorder,32,33,53,54

though different tasks may induce a wide range of condition-specific abnormal frontal activation.
Further investigations also included multiple patient groups with different psychiatric disorders
that might share partially overlapping phenotypes, such as MDD and bipolar depression,32

MDD, and schizophrenia,55 with the aim of delineating disease-specific neural biomarkers
among these disorders.

In addition to focusing on identifying brain variations in psychiatric patients relative to
healthy controls, other fNIRS studies have focused on elucidating the developmental trajectory
of specific disorders. These studies generally conducted cross-sectional investigations of
the different stages of neurodegenerative diseases such as Alzheimer’s disease (AD), with the
focus on elucidating neural biomarkers of disease progression (e.g., preclinical, mild, mod-
erate stage of AD).37,56 Other studies examined longitudinal change within the same patient
cohort to establish neuroimaging indicators that might contribute to the detection of symptom
severity over time.57,58 On the other hand, the association between brain hemodynamic
response alterations and treatment outcomes following intervention was also explored.
Numerous lines of evidence have shown that longitudinal changes in hemodynamic response
measured by fNIRS were significantly associated with the treatment outcomes in patients with
MDD after different therapies.59–61 Overall, these studies support the feasibility of utilizing
fNIRS to assess cross-sectional and longitudinal neural signatures related to psychiatric
disorders.

Behavioral rating scales are subject to low sensitivity and specificity and high inter-rater
variation for assessing cognitive-behavioral symptoms of psychiatric patients. Recently, emerg-
ing evidence has shown that fNIRS-derived neuro-biomarkers might be used as intermediate
outcome measures for assessing pharmacological or intervention effects in clinical trials of
psychiatric disorders. Several studies applied fNIRS to assess hemodynamic response patterns
induced either by methylphenidate (MPH) or by olfactory stimulation in patients with
ADHD.62–64 Results showed that hemodynamic responses may be potentially related to neural
modulation from these treatments. Apart from pharmacological effects, fNIRS has been widely
used to examine the effects of different neuromodulation and nonpharmacological treatments on
patients with depression and PTSD, such as transcranial magnetic stimulation (TMS), repetitive
TMS (rTMS), and transcranial electrical stimulation (TES).65–69 These studies indicate that
neuromodulation techniques that improve psychiatric symptoms can be reflected by changes in
cortical hemodynamic responses.

2.2 Advanced fNIRS Instrumentation and Paradigms in Psychiatric Studies

The mobility and flexibility of fNIRS systems are particularly well-suited for psychiatric studies
that involve patients with affective disorders, motor restlessness, and anxiety symptoms (e.g.,
ASD, ADHD, and anxiety disorder). However, typical fNIRS systems used in early psychiatric
studies were accompanied by methodological constraints that hindered broader applications
to the field. These constraints included poor spatial resolution, low signal-to-noise ratio, and
nonportable structures such as long and heavy probe sets and large control units.12,17,23 Over
the past 10 years, fNIRS systems have rapidly advanced toward modular, wireless, and wearable
designs that increase the potential scope of psychiatric applications.70,71 For instance, a highly
modular, scalable, and wearable diffuse optical tomography (DOT) system, a special type of
fNIRS device with enhanced spatial resolution, was developed to enable investigations of brain
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activity associated with natural behaviors in ecologically valid settings45 [Fig. 2(a)]. In addition,
a mobile and modular hybrid device (EEG + fNIRS) was developed to allow for a simultaneous
multimodal biosignal recording.72 This design is one example that sets the stage for future
fNIRS systems that incorporate multiple neural and physiological sensors in a modular design
[Fig. 2(b)]. Recently, modular and wearable time-domain fNIRS systems have also been
developed (e.g., Ref. 73). These systems can be built with miniaturized laser drivers, custom
integrated circuits, and specialized detectors that allow for dense channel coverage over the
entire head [Fig. 2(c)].

Taking full advantage of the high mobility of fNIRS systems, researchers have investigated
atypical brain dynamics of psychiatric disorders in more unconstrained and natural environ-
ments. One of the most exciting applications of fNIRS is hyperscanning, in which brain
activities are recorded from two or more participants simultaneously, permitting a direct inves-
tigation of quantitative links between two or more brains during interpersonal interaction
[Fig. 3(a)].76,77 Since the first fNIRS-based hyperscanning study published in 2012,24 this
approach has been rapidly applied to studying neural dynamics during social interaction
among healthy groups (e.g., teacher-student and mother-child),78–81 as well as patients with
primary or secondary social dysfunction, such as ASD74,82,83 and depression,14,84 respectively.
A typical paradigm used to study interbrain synchrony in parent-child dyads is shown in
Figs. 3(b) and 3(c). In addition to hyperscanning, fNIRS is utilized in psychiatric studies
to investigate a wide range of cognitive-behavioral characteristics in individuals with psychi-
atric disorders using real-world tasks. Novel paradigms include face recognition,42 imitation
action,85,86 eye gaze contact,87,88 verbal fluency,89 delayed working memory,90 assessment
of brain development in remote geographical or low-resource areas,91,92 and real-time neuro-
feedback (NF).93,94 It is also important to note that fNIRS can be used jointly with other
bio-behavioral measurements such as eye-tracking devices. As shown in Figs. 3(d) and 3(e),
we conducted simultaneous fNIRS and eye tracking recording in girls with fragile X syndrome
(FXS) during a natural conversation to show aberrant neural response and eye gaze patterns
associated with this genetic condition.75 All of the aforementioned studies highlight the
flexibility of fNIRS in studying the cognitive-behavioral characteristics of patients with neuro-
psychiatric and neurodevelopmental disorders.

3 Perspective of fNIRS in Future Psychiatry Research

3.1 Development of fNIRS Instrumentation and Multimodal Integration

The recent development of wireless and wearable fNIRS systems allows for broader research
applications in psychiatry.45,46,71,72 However, enhancement of fNIRS instruments should be

Fig. 2 Mobile, modular, and wearable fNIRS systems. (a) A wearable fNIRS device consisting of
DOT modules for modular design. Adapted with permission from Ref. 45. (b) A device that allows
for simultaneous recording of fNIRS, EEG, and other physiological signals. Adapted with permis-
sion from Ref. 72. (c) A time-domain fNIRS device with a miniaturized design and whole-head
coverage. Adapted with permission from Ref. 73.
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considered for applying fNIRS to the future study of populations of patients with psychiatric
disorders. Specifically, patients with psychiatric disorders such as ASD, bipolar disorder, and
ADHD, often display motor restlessness, anxiety, or hyperarousal symptoms that require specific
consideration when using fNIRS. Key factors in instrument design to be considered should
include (1) user-friendly materials for comfort optode contact, (2) lightweight and low-burden
design for enhanced measurement experience and experimental compliance, and (3) advanced
signal processing algorithms and noise reduction capacity for robust system performance during
long-duration, real-world study (e.g., field studies in low-resource areas). We envision that these
challenges will be addressed in the next several years. In particular, highly wearable fNIRS sys-
tems could benefit from the steady progress in NIRS light source and sensor development.
Large-size laser sources are being replaced by cheaper and smaller light emitters diode sources
with comparable performance and high flexibility.12,95 Single-photon avalanche diode and
silicon photomultipliers sensors are gaining more attention due to their superior sensitivity
compared with the conventional avalanche photodiodes and regular silicon photodiodes.96 In
addition, the optimization of the circuit designs associated with miniaturized, high-performance
electronics and the maturation of artifact removal algorithms should further increase the mobility
of systems and expand the application scenarios of fNIRS in psychiatric studies.21,72,95–97

Simultaneous multimodal data recording, including brain, physiological, and behavioral
information, is becoming more common and important for a comprehensive understanding
of psychiatric disorders. For instance, concurrent imaging of fNIRS and EEG has provided high
spatiotemporal information for investigating brain activity.20,98–102 Concurrent fNIRS and eye
tracking measurement has been adopted to investigate aberrant neural response and associated
eye movements in children with genetic risk factors for ASD (e.g., FXS75). Physiological or
auxiliary signals, such as blood pressure, respiration, and head movement, have been proven
to greatly improve the filtering of physiological interference and motion artifacts during the
fNIRS signal processing.103–106 In light of these technical and methodological advances, a clear
focus for future fNIRS instrument development with respect to applications to psychiatry should
be on wearable fNIRS systems that can be effectively integrated with a variety of other sensors

Fig. 3 Applications of fNIRS in social interaction. (a) A representative hyperscanning fNIRS
experiment measuring inter-brain synchronization during social cooperation and competition.
Adapted with permission from Ref. 24. (b) and (c) A typical hyperscanning game was used to
study inter-brain synchronization between parent and child with ASD during a cooperation game
and a competitive game. Adapted with permission from Ref. 74. (d) and (e) Simultaneous fNIRS
and eye tracking recording in girls with fragile X syndrome during a natural conversation. Adapted
with permission from Ref. 75.
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and modalities such as EEG, eye tracking devices, physiology modules (e.g., heart rate and skin
conductivity), accelerometers, and virtual reality devices. We expect a highly portable and multi-
functional fNIRS system will pave the way for new and highly innovative psychiatric studies
over the next few years, particularly in the domains of real-world settings.

3.2 fNIRS-based Closed-loop Neurofeedback and Treatment

The mobility of wearable fNIRS allows for investigating neural signatures related to the assess-
ment of multidomain cognitive-behavioral functions such as social skills, problem-solving, and
emotion processing. However, these investigations are still in the early stages of applying fNIRS
in psychiatric research, yet there is no doubt that the next few years will see novel approaches for
using this technique. Here we emphasize the potentially important role of fNIRS in real-time NF
training and clinical intervention in future research. NF is a specific form of biofeedback that
provides users with real-time feedback about their brain activity, thus enabling users to regulate
their own brain activity with the aim of improving the target neurocognitive function putatively
underlying, e.g., psychiatric symptoms. It has been shown that combined cognitive training and
fNIRS-based NF may enhance the executive function of healthy adults after a relatively short
period of training.90 For example, a pilot study showed that fNIRS-based NF training enhanced
therapeutic effects in children with ASD compared with patients who received sham NF
training.93 For patients with ADHD, several studies showed that fNIRS-NF training resulted
in reduced ADHD symptoms comparable to other treatments (i.e., EEG-NF, electromyogra-
phy-feedback, and medication).107–109 Though none of these approaches has been widely applied
in clinical care and treatment, these findings highlight a potential roadmap for developing
fNIRS-based NF protocols for treating patients with psychiatric disorders in the future. Such
fNIRS-based NF protocols could also enable individuals with psychiatric disorders to receive
flexible and independent rehabilitative training at home, perhaps combined with real-time
app-based symptom monitoring.

In addition to being used as a tool for computational NF training, an important future appli-
cation is integrating fNIRS with neural treatments (e.g., neuromodulation) in a closed-loop inter-
vention design. Over the past 10 years, a growing number of studies have utilized fNIRS to
explore the brain response of psychiatric patients during or after neuromodulation treatments
including TMS and TES.69,110–113 Together with the trend toward increasing mobility of
fNIRS, these studies have given rise to the development of a novel and individualized multi-
modal intervention approach for psychiatric treatments. Specifically, the fNIRS measurement
could serve as a key component of a closed-loop system that monitors brain response in real
time and adaptively adjusts stimulation parameters (e.g., intensity and location) or treatment
setting (e.g., drug delivery) in a dynamic manner, thus enhancing treatment outcomes for
patients. We foresee that this kind of fNIRS-guided closed-loop intervention system may be
particularly suitable for regulating psychiatric disorders that manifest symptoms of repetitive,
recursive thoughts (e.g., rumination) or behaviors, such as that observed in obsessive-compulsive
disorder and other anxiety disorders.

The present and future of fNIRS applications in psychiatry are promising, but there remain
several challenges to be addressed before additional, substantive progress can be achieved and
applied to the clinical setting. First, both fNIRS-based NF and real-time brain activity monitoring
require reliable and real-time signal processing to provide instant feedback. Yet, due to the inher-
ent prolonged delay of hemodynamic response and low signal-to-noise ratio, the majority of
conventional fNIRS analyses have primarily relied on offline analysis and multiple trials, neither
of which are computationally efficient or technically feasible for real-time analysis. Future
applications will also require advanced approaches to remove signal artifact contamination
in real time, as well as single-trial signal processing. Both will enhance the real-time brain
assessment.114,115 Moreover, the mainstream literature studying brain dynamics associated with
specific tasks or neural treatment has focused on group-level analysis that does not take the
individual subject variation into consideration. To achieve individualized treatment, it is critical
to identify subject-specific neural biomarkers and target brain regions of interest for accurate
monitoring of brain activity, thus facilitating the individualization of treatment protocols to
obtain enhanced efficiency for individual patients.

Li et al.: Current opinions on the present and future use of functional near-infrared spectroscopy in psychiatry

Neurophotonics 013505-6 Jan–Mar 2023 • Vol. 10(1)

Downloaded From: https://www.spiedigitallibrary.org/journals/Neurophotonics on 08 Feb 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



3.3 Diagnostic Efficacy of fNIRS in Psychiatric Disorders

Another important future perspective for fNIRS applications to psychiatry pertains to diagnostic
precision and identifying valid subgroups. Although fNIRS has been widely used to characterize
alterations in cerebral oxygenation related to various (phenomenologically defined) psychiatric
disorders, its efficacy in screening disease-specific neurobiological signatures is rarely explored,
particularly with respect to the sensitivity and specificity of fNIRS measurement in addressing
the heterogeneity of psychiatric disorders.

A typical challenge in diagnosing psychiatric disorders is that patients with different risk
factors and neurobiological mechanisms may exhibit similar symptoms that lead to hetero-
geneity in well-accepted psychiatric diagnostic categories. For instance, a broad range of inde-
pendent genetic influences, such as FXS, increases the risk for ASD.116 Although FXS is known
to have a clear genetic-biological etiology, many individuals with FXS also manifest cognitive-
behavioral symptoms similar to individuals with (nonfragile X) ASD diagnoses.117–119

Therefore, it is becoming increasingly important to identify fNIRS-based biomarkers that are
uniquely associated with different neurobiological risk factors for psychiatric disorders, and
consequently, to enhance the possibility of measuring the response to syndrome-specific
interventions.75 To address this issue, we recommend that, in addition to recruiting healthy con-
trols as a contrast group for fNIRS studies, future investigations should recruit patients with
comparable symptoms but different diagnoses as comparison groups to elucidate psychiatric
biomarkers for the target disease.

Another challenge of using fNIRS as a diagnostic tool for psychiatric disorders is the rel-
atively poor spatial resolution and penetration depth of fNIRS compared with fMRI. These
limitations constrain the sensitivity of fNIRS in detecting spatially subtle neural signatures
at cortical or subcortical areas that might be critical in disease diagnosis (e.g., anxiety or
depressive disorders). Promisingly, high-density DOT systems have demonstrated precise
mapping of brain function with fNIRS, pushing its spatial resolution close to that of
fMRI.120 However, the additional reduction of weight and the ergonomics of such systems
still need to be addressed. We envision that portable and fiberless high-density fNIRS devices,
including both tomography and topography designs, will be developed and optimized in the
upcoming years to reconcile the need for high spatial mapping in psychiatric studies. The effort
to tackle the depth limitation of the superficial fNIRS signal has also been made. Through
computational methods, several studies have shown that fNIRS signals measured from the
cortex can be used to infer fMRI signals measured from deep-brain areas that are critically
linked to the pathophysiology of psychiatric disorders, such as the insular cortex, amygdala,
and hippocampus.121,122 These findings provide indirect but promising solutions to extend the
detectability of fNIRS without sacrificing its cost-effectiveness and portability. To move for-
ward, more studies are required to evaluate how sensitive the fNIRS signal could infer the
neural alterations in subcortical areas as well as the abnormal cortical-subcortical connections
in patients with different psychiatric disorders.

Integration of multidimensional disease-linked information could also be an effective solu-
tion for enhancing the diagnostic efficacy of fNIRS in psychiatric disorders. As noted in Sec. 3.1,
multimodal systems integrating portable fNIRS and other neuroimaging techniques, physiologi-
cal, and behavioral measurements (e.g., EEG, eye tracking, and skin conductance) allow for
a simultaneous recording of brain-physiology-behavior markers for psychiatric disorders.
We expect that future studies in the field will propose advanced algorithms, most likely based
on machine learning techniques, to fuse such multimodal information for more reliable diagnosis
and even early prediction of psychiatric disorders.

4 Conclusion

The mobility, low cost, and relative resilience to motion artifacts of fNIRS have marked this
technology as one of the most promising tools for assessing human brain activity. In the field
of psychiatry, we have seen rapid growth in the use of fNIRS for understanding neural mech-
anisms of various psychiatric disorders and in providing preliminary evidence for refining the
treatment of persons with these disorders. However, there remain significant challenges to the
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wide application of fNIRS to both clinical and research settings, with respect to both instrumen-
tation and signal processing. In particular, the mobility and robustness of fNIRS systems will
have to be further advanced together with enhanced spatial resolution and depth to achieve
improvements in signal quality and sensitivity. Novel paradigms and new algorithms for
single-trial signal processing will be needed to facilitate the routine use of real-time fNIRS
NF training and intervention in clinical practice. The integration of multi-dimensional informa-
tion (e.g., EEG, eye tracking, and heart rate) and artificial intelligence will be invaluable for
enabling effective personalized monitoring, diagnosis, and treatment for patients with psychiatric
disorders. Finally, all of these improvements should be validated in larger clinical populations
with standardized paradigm protocols and data analysis pipelines to ensure sufficient reproduc-
ibility and reliability for the clinical applications of fNIRS in psychiatry.
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