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Abstract: Recent work has shown that deep learning is a powerful tool for predicting brain

activation patterns evoked through various tasks using resting state features. We replicate

and improve upon this recent work to introduce two models, BrainSERF and BrainSurfGCN,

that perform at least as well as the state-of-the-art while greatly reducing memory and

computational footprints. Our performance analysis observed that low predictability was

associated with a possible lack of task engagement derived from behavioral performance.

Furthermore, a deficiency in model performance was also observed for closely matched task

contrasts, likely due to high individual variability confirmed by low test-retest reliability.

Overall, we successfully replicate recently developed deep learning architecture and provide

scalable models for further research.
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2 1 INTRODUCTION

1 Introduction

Task-based functional magnetic resonance imaging (tfMRI) remains a preferred neuroimaging modality to

discover neural correlates (Emch et al., 2019; Ward et al., 2003) and examine the functional organization

of the brain (Barch et al., 2013; Deary et al., 2004). Due to the high level of specificity of tasks

performed in a scanner, experimental design can be fine-tuned to target specific neural circuits. However,

the acquisition of tfMRI data can be highly time-consuming and expensive.

Recently, it’s been suggested that task-based brain activity may contain more behaviorally relevant in-

formation than resting-state functional connectivity alone (Finn, 2021; Zhang et al., 2021). In addition,

there are many clinical applications involving task performance and functional network analysis for psy-

chiatric research, e.g., predicting responses to therapy (Pagliaccio et al., 2019) and analyzing individual

differences in brain-behavior relationships (Hearne et al., 2021a; R. Jiang et al., 2020). As resting-state

networks are known to contain similar functional architectures to those seen during task performance

(Smith et al., 2009), the challenge of predicting task activation maps from resting-state features has

become a more prominent focus in the field. Further, using resting-state data to predict task activation

maps provides a cost-effective avenue for examining a variety of task contrasts rather than just a few and

developing a proxy for task-based analysis of existing datasets that currently only contain resting-state

data.

Models that can predict task activation maps from the resting state can be used to validate the Re-

search Domain Criteria (RDoC) framework comprehensively. RDoC is a framework introduced by the

National Institute of Mental Health to better understand mental disorders by focusing on dimensions

of observable behavior and neurobiological measures. To validate this framework, task-based functional

MRI contrasts provide a valuable approach by identifying overlapping patterns of brain activation across

cognitive domains/sub-domains (Quah et al., 2024). However, given that no single individual is likely to

perform all tasks associated with the RDoC domains, methods that can predict task contrast maps at

the individual level are crucial. These predictive models would allow for a more comprehensive validation

of the RDoC framework in healthy and patient populations. Recent work has shown that even clinically

relevant dysfunctional activations could be accurately predicted from the resting state scans in patients

with Schizophrenia (Hearne et al., 2021b).

Recent work by Cole et al., 2016 and Tavor et al., 2016 laid the foundational research for this idea by

using predictors from resting-state networks (Yeo et al., 2011) in a series of regression models designed

to predict task activation maps. More recently, this work was expanded upon by Ngo et al., 2022 to

include a deep learning technique called BrainSurfCNN and suggest that the previous regression models
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like those in (Tavor et al., 2016) performed quite similarly to group-average contrast maps. To do this,

Ngo et al., 2022 built upon several critical architectures in the field of deep learning like the U-Net

(Milletari et al., 2016; Ronneberger et al., 2015) and surface-based mesh convolution (C. Jiang et al.,

2019 along the cortical surface, represented by the fsLR 32k template, (Van Essen et al., 2012) to attain

state-of-the-art performance.

In the current work, we aim to reproduce BrainSurfCNN and introduce two adjustments to the model:

squeeze-excitation attention and graph convolution. Further, we elucidate several critical aspects of

BrainSurfCNN’s performance, including its sensitivity to the number of independent components and its

overall efficacy in leveraging resting-state functional connectivity patterns for task activation mapping

compared to our modified architectures. We also introduce two new models in accordance with these

adjustments. In particular, we focus on our model, which maintains prediction performance while reducing

computational costs. Lastly, as observed previously, models perform differently across subjects. To better

understand the individual variability in model performance, we performed additional debugging. We

specifically tested two hypotheses. First, we hypothesized that a lack of task engagement could drive

the drop in predictability. We examined this hypothesis using behavioral performance on the task and

its effect on model performance. Second, we hypothesized more noise in the scan would lead to poorer

prediction performance. To test this, we analyze the temporal signal-to-noise ratio (tSNR) across the

cortex and its overlap with the contrast maps.

2 Methods

2.1 Dataset

Like BrainSurfCNN, we used de-identified publically available data from the Human Connectome Project

Young Adult (HCP) dataset (Van Essen et al., 2013) to train our models. The study was approved by

the Stanford University Institutional Review Board.

Specifically, as input to our models, we used the FIX-cleaned, 3T resting-state fMRI (rsfMRI) data

acquired in four 14.4-minute runs, each with 1200 time points per session per subject. We employ the

data augmentation scheme as proposed in (Ngo et al., 2022) in which samples of the resting state data

are drawn from all four recordings of resting state data. This aggregation of recording data amounts

to 4,800 time points that are split into eight samples of 600 time points from which the functional

connectivity is determined. These 8 samples allow us to extend the training set of our data by uniformly

sampling from these 8 chunks in each epoch of training. The acquisition and preprocessing methods
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4 2 METHODS

for the HCP dataset have been described elsewhere in (Barch et al., 2013; Glasser et al., 2013; Smith

et al., 2013). Group-level parcellations derived from spatial ICA were also released by the HCP, and

we examined the performance of our models trained on various component parcellations for computing

the functional connectomes. Since the authors in (Ngo et al., 2022) explored data with 50 independent

components (ICs), we thought a natural extension would be to explore various amounts of independent

components around that order of magnitude. Using these spatial components, we create new training

datasets derived from 15, 25, 50, and 100 independent components. For our target data, HCP’s tfMRI

data spans seven task domains, and, following Tavor et al., 2016 and Ngo et al., 2022, we obtained 47

unique contrasts after excluding redundant task contrasts.

Additionally, we only included subjects with all four resting-state runs and all 47 task contrasts, which

gave us n=919 subjects for training, of which five subjects were used for a validation set (Ngo et al.,

2022). The use of the validation set prevents overfitting our models during the training process. We

also carried out a 5-fold cross-validation training regime and found similar performance in our models

as seen in Supplementary Table 4. Similar to previous work (Ngo et al., 2022), our test set comprised

n=39 subjects from the original HCP dataset that were retested with the same acquisition methods.

This allowed us to compare the model’s performance against a repeat contrast during a separate visit.

The test set participants do not overlap with the participants in our training set. We only hold out these

39 participants because they have two sets of contrasts. We use this second set as an optimal prediction

(though not model-based) of the activation seen in the ground truth task contrasts. The idea here is

that a task contrast taken from the same subject is the best model in terms of predicting the individual

variability seen in the same task in a different session: the same brain should look most similarly to the

same brain across multiple scans. Thus, this retest provides us with a theoretical upper bound, or noise

ceiling, for model performance. We differentiate the data we tested on from this noise ceiling benchmark

by hereon referring to the test data as the ”test dataset” and the noise ceiling benchmark as the ”retest

dataset.” This is an important distinction because there is no resting-state data collected for the retest

dataset which means, therefore we don’t use this retest dataset as a ground truth for prediction.

Similar to Ngo et al., 2022, in the proposed deep learning framework, the input data are structured as

multi-channel fs LR polyhedral meshes, each consisting of 32,492 vertices, to accommodate the high-

dimensional spatial topology of cerebral cortex representations. Each channel within these meshes is

dedicated to an independent component derived from functional MRI data preprocessing, serving as a

distinct feature for the model’s input layer. For instance, in a scenario where the model is configured

to analyze 50 independent components, the total input dimensionality would amount to 100 channels,

reflecting the bilateral nature of cerebral anatomy with a separate mesh for each hemisphere. The model’s

output mirrors the input’s structural format, generating a polyhedral mesh with 32,492 vertices. However,
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2.2 Models 5

in the output mesh, each vertex’s value across the channels indicates the predicted task contrast for the

corresponding location in the brain hemisphere. Given that the study focuses on predicting 47 distinct

task contrasts, the model’s output dimensionality is adjusted to feature 94 channels, with each pair of

channels representing the predicted contrasts for the left and right hemispheres, respectively.

2.2 Models

2.2.1 BrainSurfCNN

The development of BrainSurfCNN integrates the foundational principles of a U-Net architecture (Mil-

letari et al., 2016; Ronneberger et al., 2015), a prevalent framework in medical image segmentation,

with advanced mesh convolution techniques to facilitate the analysis of brain surface data. This inno-

vative approach is significantly influenced by the pioneering work on convolution for spherical meshes

called UGSCNN, as detailed by C. Jiang et al., 2019. The primary objective of BrainSurfCNN (Ngo

et al., 2022) is to leverage the spatial hierarchies inherent in polyhedral meshes to predict task-related

activation patterns, represented as contrast maps, from resting-state independent component (IC) maps.

In our study, we replicated the BrainSurfCNN model using the source code made publicly available

by the original authors on GitHub 1. This replication process was not merely an exercise in model

reconstruction, but a deliberate effort to validate and extend the model’s application. A cornerstone

of our analysis involved a systematic examination of BrainSurfCNN’s performance across a spectrum

of resting-state scans characterized by varying numbers of independent components. Specifically, we

conducted comparative analyses using datasets composed of 15, 25, 50, and 100 independent components

to assess the model’s robustness and scalability with varying levels of information. This approach allowed

us to explore the impact of independent components on the model’s ability to predict task contrasts

accurately on both an individual and a group level of analysis.

2.2.2 BrainSERF

The Squeeze-and-Excitation (SE) attention mechanism has emerged as a pivotal innovation in the field

of computer vision, significantly enhancing the representational power of convolutional neural networks

(CNNs) by enabling channel-wise feature recalibration (Hu et al., 2018). This technique introduces

trainable scaling coefficients that adaptively adjust the weighting of each channel in the network’s fea-

ture maps, thereby allowing the model to emphasize informative features and suppress less useful ones

1GitHub Link: https://github.com/ngohgia/brain-surf-cnn

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.10.612309doi: bioRxiv preprint 

https://github.com/ngohgia/brain-surf-cnn
https://doi.org/10.1101/2024.09.10.612309
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 2 METHODS

dynamically. The SE attention mechanism operates by first ’squeezing’ global spatial information into a

channel descriptor through global average pooling, followed by ’excitation’ operations—fully connected

layers that capture channel-wise dependencies. Given two weight matrices Wsq and Wex, we perform the

squeeze operation by globally pooling each mesh so that our representation of input X transforms from

shape R32,492×C to R1×C where C represents the number of hidden channels. Next, we define a ratio

r such that the matrix Wsq transforms the data from R1×C to R1×C
r . We finish the ’squeezing’ with

a Tanh activation to capture negative values to get X ′. To perform the ’excitation’ step, we multiply

the transformed X ′ by Wex to expand the channel-wise axis back to a matrix in R1×C to get S. We

apply a Tanh activation function again to capture negative values. This matrix S represents a scaling

on the channel-wise axis. We channel-wise multiply X ∈ R32,492×C by S to achieve the output Xscaled, a

channel-wise rescaled form of the input X. The intuition with this mechanism is to periodically rescale

the hidden representation of the mesh channels and highlight or suppress entire latent activation patterns.

These operations produce scaling coefficients applied to the original feature maps, effectively allowing

the network to perform self-attention across channels. In our network architecture, we implement SE

attention before the mesh convolutional layers during the coarsening stage of the mesh, inspired by the

work in Wang et al., 2021.

Furthermore, we have innovated beyond traditional activation functions by transitioning from Rectified

Linear Unit (ReLU) activations to Hyperbolic Tangent (Tanh) activations throughout our network. This

adjustment is primarily motivated by the need to accommodate negative values within the SE attention

mechanism and the predicted task contrasts. The Tanh activation function enables our network to

capture a broader spectrum of feature dynamics, including both positive and negative activations that

are present in the task contrast maps.

2.3 BrainSurfGCN

In predicting task contrast activation maps from resting-state functional magnetic resonance imaging

(rsfMRI), employing graph neural networks (GNNs) offers several compelling advantages that align with

the intrinsic properties of brain data and the objectives of neuroimaging analysis. The human brain

can be conceptualized as a complex network, with nodes representing different brain regions and edges

representing functional or structural connections between these regions. This network-centric view is

inherently compatible with the structure of GNNs. We define a graph below.

Definition 1. An undirected graph G can be defined as G = (V , E), where v ∈ V represents a node

with feature size in RC and e ∈ E represents an undirected edge between two vertices vi and vj.
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2.3 BrainSurfGCN 7

We leverage the spherical mesh used in Ngo et al., 2022 as the graph’s structure for each input, such that

|V| = 32,492 mesh. Thus, our input data has two parts. The node-wise representation, V , is represented

as a matrix in R|V|×C, where each node v ∈ V has C learnable parameters. The edge-wise representation

is a list of tuples of vertices that are connected such that edge e ∈ E connecting vertices vi and vj is

represented as (i, j), and E ∈ Z2×|E|.

We build BrainSurfGCN upon the work of Kipf and Welling, 2016, which introduces the Graph Convolu-

tion Network. The layer architecture we use for this study builds upon the implementation of the Graph

Convolution Layer seen in PyTorch Geometric (Fey and Lenssen, 2019), and we build a network composed

of what we call the BDLayer. The structure of the BDLayer includes a GCN Layer, a LeakyReLU activa-

tion, and a BatchNorm layer. The BatchNorm layer accelerates learning by reducing internal covariate

shift (Ioffe and Szegedy, 2015) through the recentering of features using the formula:

y =
x− E[x]√

Var[x]
∗ γ + β (1)

where γ and β are learnable parameters, this layer acts along a node’s feature-wise axis. The GCN Layer

defines the update of a node’s feature space from X to X ′ as

X ′ = D̂−1/2ÂD̂−1/2Θ (2)

where Â = A+I denotes an adjacency matrix with added self-loops, and Θ denotes the learnable weight

matrix. The adjacency matrix A is formed such that Aij = 1 if eij ∈ E , and Aij = 0 if eij /∈ E .

This operation allows us to pass information between vertices on the mesh at a distance of 1 hop per

layer. To ensure that node information is disseminated across the entire graph, we use 8 BDLayers.

Additionally, we believe that spatial information is important in predicting the activation on the mesh,

so we included the XYZ coordinates of each vertex as 3 additional channels for our input data. These

coordinates represent the locations of the vertices of the polyhedral sphere centered on the origin (0,0,0)

with a radius of 1. Work in Liu et al., 2018 also suggests that including spatial information can improve

convolution operations. With a resting-state map of 50 ICs per hemisphere, our input feature space lies

in R32492×(2∗50+3). Figure 1 shows our architecture from a high-level perspective, complete with the input

and output feature spaces.
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8 2 METHODS

Figure 1: A high-level overview of the BrainSurfGCN model architecture. We chose this structure
for the BDLayers of the model since the literature has shown that the combination of Graph Convolution,
LeakyReLU, and BatchNorm performs well. There are 8 modules of BDLayers to ensure that information
is disseminated across the entire mesh during one pass of the model.

2.4 Training Details

All the models trained in these experiments used the same set of hyperparameters and training regimes.

Models were developed and trained in PyTorch (Paszke et al., 2019), and we used Adam (Kingma and

Ba, 2014) for optimization. We utilized a learning rate of 0.001 and trained the models for 50 epochs

using mean squared error (MSE) loss to promote task contrast reconstruction. We used the model with

the best-predicted correlation on the validation set at the end of 50 epochs for evaluation. Because we

trained several types of models, we compared performance after the first round of training to decide if

training should continue. Two models did not continue after the first round of training, and they are

mentioned in Sections A.1 and A.2 of the Supplementary Material.

If the model’s performance was similar – measured by the correlation between prediction and ground

truth – to the model performance demonstrated by Ngo et al., 2022, we continued with the next phase

of training. In this second step, we used the trained model to compute and average the MSE across the

training set for same-subject reconstruction loss, α, and across-subject reconstruction loss, γ, to be used

as hyperparameters in the next step of training that used a reconstructive-contrastive (RC) loss function

proposed by Ngo et al., 2022. Given a mini-batch of N samples, B = {x̂1..x̂N}, in which x̂i is the target

multi-channel contrast image of subject i, the RC loss function is defined as
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2.5 Evaluation 9

LR =
1

N

N∑
i=1

(xi − x̂i)
2 and LC =

1
1
2
(N2 −N)

N∑
x̂j∈B,j ̸=i

(xi − x̂j)
2 (3)

LRC = [LR − α]+ + [LR − LC + γ]+. (4)

Using the RC loss described in Equation 4, we train the model again for 50 epochs. Before training, we

initialize values for α and γ from the losses computed over the training set. These values are updated

every 10 epochs such that:

αt =
1

2
αt−1 and γt = 2γt−1 (5)

until α reaches a minimum of 1 and γ reaches a maximum of 10. Using this RC loss function, we

encouraged the model to differentiate task contrast reconstructions between subjects, thereby capturing

individual differences.

2.5 Evaluation

To evaluate the efficacy of our model in predicting task contrast maps from resting-state functional

MRI (fMRI) data, we employ three distinct metrics: correlation, Dice coefficient (also referred to as

F1 Score), and subject identification accuracy. These metrics offer a comprehensive assessment of the

model’s performance, each addressing different aspects of prediction quality.

The correlation metric primarily measures the linear relationship between the model’s predicted task

contrasts and the empirically observed (ground truth) contrasts. This metric was chosen for the sake of

replication to compare the results from (Ngo et al., 2022. By computing Pearson’s correlation coefficient,

we quantify how the predicted values co-vary with the actual task contrasts across the mesh’s vertices.

A high correlation coefficient indicates that the model effectively captures the spatial distribution of

neural activations associated with specific tasks, mirroring the patterns observed in the ground truth

data. A crucial aspect of the performance is ensuring that within-subject covariance is more similar than

inter-subject covariance.

The Dice coefficient enhances our evaluation by measuring spatial overlap between the predicted and

ground truth task contrast activation patterns. To calculate this metric, we first apply a series of

thresholds to the activation values at each vertex, classifying them as ’activated’ or ’non-activated.’ For
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10 3 RESULTS

each threshold, the Dice coefficient is computed as the harmonic mean of precision and recall between

the two binary sets of activated vertices. Thus, the specificity of predicted activation on the contrasts

is computed over a range of threshold values, ensuring predicted regions with higher activation (from a

higher threshold) overlap with the higher activations in the ground truth contrasts. Thereby, we capture

another measurement, in addition to correlation, related to both the spatial distribution and the relative

magnitude of the cortical activation.

To assess the model’s capability in capturing individual-specific features within the task contrasts, we

use an evaluation method introduced by Ngo et al., 2022 based on subject identification accuracy. This

approach involves computing the correlation between each predicted task contrast and all available ground

truth contrasts across subjects for the same task. The identification of the subject is deemed correct if

the highest correlation corresponds to the correct subject’s ground truth contrast compared to those for

other subjects. This metric reflects the model’s sensitivity to individual differences in brain activation

patterns, highlighting its potential for personalized neuroimaging analysis. We computed this accuracy

for each quantity of ICs used in training and also included a bagged average across the models trained

on various ICs to give us an average prediction. Unfortunately, GPU memory restrictions prevented us

from training a version of BrainSERF on input data with 100 ICs.

3 Results

To provide a clear and unbiased comparison of model performance, we selected models with the highest

subject identification accuracy for further analysis. These best-performing models were selected from

the sets of models trained on the datasets constructed from selecting various independent components.

For example, our experiments showed that BrainSurfCNN performed best with 25 ICs, while BrainSur-

fGCN performed best with 50 ICs. These models were selected for further analysis. This selection

criteria ensures that our comparisons are centered around the top-performing models across all evaluated

architectures.

Initially, we explored the spatial correlation of the predicted task activation maps and the subject identi-

fication accuracy. The subject identification was performed by verifying if a predicted task contrast had

the highest correlation with the target contrast. This analysis is crucial for understanding how well the

models can predict individually localized brain regions associated with specific cognitive tasks. These

results for spatial correlation are shown in Figure 2. In this figure, a high correlation difference value

signifies that the spatial correlation of a given prediction is substantially higher when comparing the

prediction to the ground truth contrast of the same subject, as opposed to the ground truth contrasts of
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3.1 Model Evaluation 11

different subjects. Thus, we ensure the model interprets the idiosyncrasies of an individual’s resting-state

when making a prediction. Using the spatial correlation of a single predicted contrast with the ground

truth contrasts, we attempt to classify which subject the predicted contrast derived from and call this

subject identification accuracy. The averaged values across all task contrasts are shown in Table 1.

3.1 Model Evaluation

All models performed similarly and occasionally identified subjects more accurately than the retest con-

trast maps in certain tasks such as Language: Math and Language: Story. The readers are directed to

Supplementary Figures 11 and 12 to see a more detailed view of model performance on each task contrast.

To explore the possibility of a bagged model architecture, we average the predicted task contrasts across

the models trained on various ICs and report their subject identification accuracy. The retest dataset

contains a task contrasts from a second session of scans for our test set population. We use the retest

dataset correlated with the target contrasts to determine a benchmark for subject identification accuracy,

since the retest reliability provides a theoretical upper bound on model performance. When we com-

puted the same metrics across this retest set, the retest contrasts scored an average accuracy of 92.9%

across all 47 tasks. A more detailed visual of subject identification accuracy across the best-performing

individual models is shown in Supplementary Figure 4.

Table 1: Subject Identification Test Accuracy Across Varying ICs

Model 15 ICs 25 ICs 50 ICs 100 ICs Avg

BrainSurfCNN 80.3 81.0 79.5 79.3 81.8

BrainSERF (ours) 80.6 82.3 80.4 N/A 82.8

BrainSurfGCN (ours) 79.5 79.5 80.7 79.9 82.4

Retest (Benchmark) 92.9

Table 2: Number of Trainable Parameters for Each Model
No. Independent Components BrainSurfCNN BrainSERF BrainSurfGCN

15 ICs 359,902 363,062 23,742

25 ICs 365,022 368,846 24,382

50 ICs 377,822 384,706 25,982

100 ICs 403,422 422,426 29,182

Additionally, we report the number of parameters for each model with the varying number of ICS to

emphasize BrainSurfGCN’s drastic reduction in size. By utilizing shared parameters across all nodes,
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12 3 RESULTS

Figure 2: Difference in spatial correlation of predicted contrast to ground truth contrast
of the same subject versus the mean spatial correlation of predicted contrast to ground
truth contrasts of all other test set subjects. The correlation metric primarily measures the linear
relationship between the model’s predicted task contrasts and the empirically observed (ground truth)
contrasts. In this analysis, we derive the metric displayed in the figure by first calculating the correlation
between a prediction based on a single subject’s resting-state data and the subject’s ground truth task
activation contrast. Subsequently, we subtract the mean correlation of the same prediction from the task
activation contrasts of all other subjects. A high correlation difference value signifies that the spatial
correlation of a given prediction is substantially higher when comparing the prediction to the ground
truth contrast of the same subject, as opposed to the ground truth contrasts of different subjects. This
indicates that the model proficiently captures the idiosyncratic features of each individual’s task-related
brain activity.

Table 3: GPU Usage (MB) for Each Model

No. Independent Components BrainSurfCNN BrainSERF BrainSurfGCN

15 ICs 111.460864 111.476224 0.115712

25 ICs 111.481344 111.498752 0.118272

50 ICs 111.532544 111.562240 0.124416

100 ICs 111.634944 111.713280 0.137216

BrainSurfGCN efficiently leverages the structure of a mesh without the necessity of storing the mesh

gradients as a buffer. It is important to note that the numbers reported in Table 2 reflect the number of

trainable parameters in the model, and the GPU memory required to store model parameters is reported

in Table 3. These numbers tend not to change much as we adjust the number of ICs because the model’s

hidden states don’t change at all. Operations over the number of ICs quickly become operations over a
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3.1 Model Evaluation 13

set of model parameters with predefined sizes.

To achieve a granular view of all models’ predictive capabilities, we plotted the activation maps post-

thresholding the most significantly activated vertices. Figure 3 shows activation maps for a representative

participant (id: 917255) prepared for three distinct threshold values—10%, 25%, and 50% during the So-

cial Cognition: Theory of Mind task. The models’ predictions varied with different levels of thresholding,

offering insights into their sensitivity and specificity at various levels of whole-brain activation.

Figure 3: Thresholded task activation of subject 917255 for Social Cognition: Theory of Mind.
We threshold the activation maps at 3 different values to show how effectively the models capture the
distribution of activation in the brain. We also show the Dice overlap score to underscore performance
improvements of BrainSERF and BrainSurfGCN that can be seen on the individual level.

Figure 4: Dice score plots for three selected tasks showing variations in performance across
task contrasts. Each of these plots shows a variation in model performance when compared to the
retest. The first shows asymptotic convergence to retest contrast performance. The second shows
similar performance between model predictions and retest contrasts, and the third plot shows improved
performance over the retest contrasts.
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14 3 RESULTS

We computed Dice scores across a spectrum of threshold values, ranging from 5% to 50%, in increments

of 5%, as originally proposed by the creators of BrainSurfCNN. This detailed analysis allowed us to

plot the Dice scores’ variation with changing thresholds, offering a nuanced understanding of model

performance across a broader spectrum of activation intensities as seen in Figure 4. In this figure, we

also noticed that the model predictions seem to outperform the theoretical upper bound or noise ceiling.

In this case, the characteristics of real data from the Retest contrasts mean that noise or small shifts in

the location of activation could affect the performance here. These results are consistent with what Ngo

et al., 2022 reported.

Furthermore, we calculated the area under the curve (AUC) for these Dice scores, which serves as

a comprehensive measure of model performance across all thresholds. The unthresholded maps for all

models were also examined to provide a baseline comparison of their predictive capabilities. The maximum

value of the AUC is 0.45 since this number is the result of integrating a perfect Dice score over the range

of threshold percentages. These values for the Dice AUC can be seen in Figure 5. Additionally, we

included the average Dice AUC over the test set for all task contrasts in Figure 12 of the Supplementary

Material.

For a more detailed exposition of the Dice AUC scores and additional plots of Dice scores across various

tasks and models, readers are directed to Supplementary Tables 5 and 6. This extended analysis enriches

our understanding of each model’s strengths and weaknesses, facilitating a comprehensive evaluation

beyond the scope of the main manuscript.

3.2 Debugging Performance

The model predictions and retest contrasts seem to follow similar trends in subject identification ac-

curacy and spatial correlation when compared to the ground truth, and the variability in performance

encouraged us to explore the reasons behind this phenomenon. We tested two hypotheses to explain this

variability in performance. The first hypothesis is that a lack of neural engagement could drive the drop

in predictability. Our goal was to determine if below-average task performance is related to a lack of

focus on the task while in the scanner. A lack of focus may indicate a lack of neural engagement; hence,

brain regions activated during the task would be different than expected, leading to lower predictability.

To test this hypothesis, we identified the task contrasts that included an accuracy and a reaction time

metric. For each of these tasks, we split the group of test subjects into above-average and below-average

performers based on whether they performed above or below the mean accuracy or reaction time. Next,

we plot these two groups along their correlation difference metric gathered from predictions made by
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3.2 Debugging Performance 15

Figure 5: Unthresholded task activation of subject 917255 for Social Cognition: Theory of
Mind We compare ground truth, retest, and model predicted activation for an individual. Model predic-
tions are much smoother on the whole than the ground truth or retest activations. Though smoother,
the models perform higher in the Dice AUC score than the retest contrasts.

BrainSurfGCN.

In Figure 6, we identified the difference between above-average and below-average groups as statistically

significant for the retest and predicted contrasts made by BrianSurfGCN. The Mann-Whitney U Test
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16 3 RESULTS

Figure 6: Correlation difference for above-average and below-average task accuracy groups.
We computed the correlation difference with the ground truth test set for the retest contrasts and each
set of model predictions. Selecting only the values associated with tasks with a measured accuracy
metric for task performance. We split these sets into above-average and below-average performers. (a)
For the four sets of contrasts, we found that the retest set and the predictions made by BrainSurfGCN
indicate a statistical significance between the two groups in a Mann-Whitney U test. (b) The statistical
difference in BrainSurfGCN prediction performance was driven by two specific tasks: ’Language: Math’
and ’Relational: Relational.’

found p = 0.018, U = 40855.0 for the retest contrasts, and p = 0.035, U = 40390.0 for BrainSur-

fGCN’s predicted contrasts. We explored BrainSurfGCN on the single-task level and found two tasks

that indicated statistically significant differences between above-average and below-average performers.

In these two tasks, we found that the correlation difference was higher in the population that achieved

above-average task performance. This indicates that we could predict task activation with BrainSur-

fGCN more effectively for the above-average performers. For the statistically significant tasks, we found

”Language: Math” had p = 0.035, U = 258.0, and ”Relational: Relational” had p = 0.0042, U = 291.0

in uncorrected comparison tests. Within the retest contrasts, we found that ”Relational: Relational”

was the only statistically significant task with p = 0.038, U = 263.0 in uncorrected comparison tests.

Being an exploratory procedure, these are analyses centered around hypothesis generation rather than

hypothesis testing. Hence, we did not correct for multiple comparisons.
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3.2 Debugging Performance 17

Our second hypothesis considered the effect of noise in the resting-state scan. We posited that more

noise in the scan would lead to poorer prediction performance. To test this, we analyze the resting-state

temporal signal-to-noise ratio (tSNR) present in the test set of subjects. First, we compute an average

tSNR across all test set subjects for each vertex on the mesh. We show this average tSNR plotted on

the cortex in Figure 7a. Lower tSNR indicated in blue means that these areas of the mesh had lower

tSNR on average for subjects in the test set.

Next, we compute the Dice AUC for two cortical maps: the average tSNR and the average MSE between

the ground truth contrasts, and the retest contrasts. This is done across the same threshold interval

of top 5% to 50% activation. When thresholding tSNR, we thresholded for the smallest values on the

mesh. This allows us to compare regions with the highest prediction error against those with the lowest

tSNR. Of the Dice AUC scores we computed, we found the top 5 contrasts with the most overlap to

be: ’Language Math vs. Story’, ’Working Memory Face vs. Average’, ’Motor Tongue vs. Average’,

’Gambling Punish vs. Reward’, ’Working Memory Body vs. Average’. These contrasts all exhibited a

Dice AUC above 0.13, suggesting delta contrast maps have the most overlap between error-prone regions

and resting-state tSNR. Figure 7 shows the overlap at a 25% threshold between the average test set

MSE and tSNR. We know delta contrast maps show more variation in activation patterns, so we see

more widespread activation in Figure 8. This variation makes it very difficult for models to make an

accurate prediction since outputs of the models in Figures 5 and 8 suggest a general pattern of smooth

prediction.

To further verify that issues in prediction may be associated with noisy properties of delta contrast maps,

we computed cortical frequency plots based on thresholded activation. For each subject, we computed the

vertices within the top 10% of activated vertices. These vertices were mapped to the cortex and summed

up across all test subjects. We then divided this map by the number of test subjects to achieve frequency

in activated regions. This frequency plot was compared for all five sets of contrasts: the original test set,

the retest contrasts, BrainSurfCNN predictions, BrainSERF predictions, and BrainSurfGCN predictions.

We computed the spatial correlation of these frequency plots for each of the four contrasts not belonging

to the original test set. These correlation values suggest a marked deficit in correlation associated with

delta contrast maps. For example, we examine the Relational task and its three contrasts: Relational

Relational, Relational Match, and Relational Match-Relational.

Figure 8 shows a difference between the contrasts taken against baseline and the delta contrast maps.

Subject-wise activation is much more variable along the cortex for the delta contrast maps than the other

two contrasts. Additionally, the smoother nature of the model predictions suggests that the models do

not adeptly predict contrasts with such variability. While the predictions show a slightly more distributed
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18 3 RESULTS

Figure 7: Relationship between lower tSNR and higher MSE of BrainSurfGCN’s predictions
on the test set. (a) We computed the average tSNR for each vertex on the mesh across the test set
and plotted it on the cortex. (b) The top 5 contrasts with the most overlap between the MSE and
tSNR using the Dice AUC metric. We measured the overlap between the regions of the highest MSE and
lowest tSNR. In this depiction, these maps are shown with a 25% threshold applied to both, allowing us
to analyze the specific regions associated with the highest model error.

activation frequency along the cortex, it is much more focused and smooth than the real data. Across the

first two relational task maps, shown as an example, the retest spatial correlation was measured at 0.975

and 0.974 for Relational and Matching, respectively. The retest spatial correlation dropped dramatically

to 0.626, suggesting that even the retest contrasts may not be able to adequately represent the cortical

activation frequency plots for delta contrast maps. The full table of these spatial correlations is available

in the Supplementary Tables 7 and 8, and a drop in spatial correlation is consistent for the delta contrast

maps.

Additionally, Supplementary Tables 7 and 8 suggest that the noise ceiling aspect of the retest is very

dominant when we look at the spatial correlation of frequency plots. To obtain a frequency plot, we

threshold each of the contrast maps at 10% and mark a vertex as activated by adding a 1 to the vertex

if the vertex is included in the threshold. We then divide the sum of the total activations by the total

number of subjects to attain a likelihood of activation for the task. We then do this for the ground truth

as well. The Retest contrasts dominated in this measurement, indicating that, from a group level, the
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Figure 8: Cortical frequency plots associated with relational task contrasts. For each task
contrast, we threshold at 10% and count the number of subjects that show activation on the vertex.
This gives us a vertex value between 0 and 100, indicating the percentage of subjects with this vertex
in the top 10% of activated vertices. Delta contrast maps indicating variability across the population
in the activation maps show much more spatial variation compared to both the empirical data and the
model-predicted contrasts

Retest maps are still a theoretical upper bound for performance.

4 Discussion

Our models suggest sustained performance and a boost in computational efficiency in individual task

contrast prediction through our proposed metrics of spatial correlation, subject identification accuracy,

and Dice scores. The enhancements present in BrainSERF are attributed to the inclusion of Squeeze-

and-Excitation attention in the mesh convolution layers. This form of attention promotes channel-wise

scaling of the channels early on in the model; this can be intuitively understood as an optimized mixing

of the IC maps in unison with the U-Net architectures. The improvements in BrainSurfGCN can be

attributed to the generalized weight matrices in each layer of the GCN. These weight matrices handle all

the feature spaces similarly, so each vertex has the same manipulation as all the others. This allows for

a model to generalize feature extraction across the entire mesh.

In our comparative analysis, BrainSERF and BrainSurfGCN demonstrated subtle yet noteworthy en-

hancements in subject identification accuracy when juxtaposed with the baseline model seen in Table 1.

Notably, BrainSurfGCN emerged as a significant leap forward in computational efficiency, reducing the

memory demands of BrainSurfCNN’s parameters from 12.1MB down to 1.1MB. This reduction marks a

significant achievement in making the model more compact and facilitates accelerated training phases on
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GPUs with lesser memory capacities. Consequently, the training duration was significantly reduced from

approximately 26 to just 6 hours, enhancing the model’s usability in resource-constrained environments.

Our findings indicate that the performances of BrainSERF and BrainSurfGCN, in terms of our proposed

evaluation metrics, are similar to those of the original BrainSurfCNN. This equivalence in performance,

coupled with the computational efficiency improvements, underscores the potential of BrainSurfGCN

as a more viable option for processing and analyzing fMRI data. Therefore, for applications without

computation restrictions, we recommend using BrainSERF, where BrainSurfGCN is more applicable for

lightweight computational circumstances.

Our performance debugging is divided into two parts. The first part relates to our hypothesis that a

lack of neural engagement could drive a drop in predictability. In our experiments, we found that there

may be a significant relationship between task performance (both accuracy and reaction time) and task

predictability, at least in a subset of tasks. This relationship between poor prediction performance and

poor task performance has also been shown by Gonzalez-Castillo et al., 2015, where the prediction of

cognitive states from functional connectivity was impaired by a possible loss of concentration or awareness.

We present preliminary evidence for our hypothesis; rigorous future work is needed to better account for

task performance during prediction.

Regarding our second hypothesis for the delta contrast map performance deficits, exploratory analysis

of the predictions from our models reveals previously undiscussed insights into delta contrast maps and

their retest reliability. The discrepancies in performance between a delta contrast map and a contrast

calibrated to baseline led us to question why models performed so poorly, especially on specific delta

contrast maps. The variability in the delta contrast maps suggests that noise may be present in the

activation patterns, so we computed the MSE between the test and retest contrasts. With the vertex-

wise error, we analyzed the overlap between tSNR and retest error in the plots shown in Figure 7. We

discovered that delta contrast maps had the highest Dice AUC between the error and tSNR compared

to contrast maps taken against the baseline. As mentioned, we found the top 5 contrasts with the

most overlap: ’Language Math vs. Story’, ’Working Memory Face vs. Average’, ’Motor Tongue vs.

Average’, ’Gambling Punish vs. Reward’, and ’Working Memory Body vs. Average’. This, coupled with

widespread activation seen exclusively in the ground truth and retest maps in Figure 8 suggests that

these delta contrast maps are more noise-prone and, thereby, harder to predict.

Our proposed models have several clear limitations. The first is that the additions and changes present

in BrainSERF are incremental, and entirely new architectures may show improved performance. This is

the issue that led us to explore geometric deep learning. However, the architecture of BrainSurfGCN

is straightforward, and we believe newer graph-based learning approaches can yield better performance.
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Additionally, we did not explore the generalizability of BrainSurfGCN to graphs of different structures,

and it would be interesting to examine how the model performs with a mesh of various sizes and shapes.

For example, the original authors of the BrainSurfCNN (Ngo et al., 2022) utilize meshes of various

resolutions in the architecture, and these coarser meshes may yield similar performance with a graph

network architecture while reducing overall computation. The last limitation lies in how we perform

supervised learning. The models are learning to predict all 47 task contrasts, but these models cannot

extend to predict unseen task contrasts unless done through fine-tuning on an additional dataset.

Within our limitations, there is plenty of opportunity for future work on the model architecture and

explainability of these models. Predicting unseen tasks has been suggested by some of the original

authors of BrainSurfCNN (Nguyen et al., 2023). Further, the clinical viability of these predicted task

contrasts remains to be explored. While much work has been done to link tfMRI to behavior, more

research must be done to determine if and how well model-derived task activation maps link to behavior.

5 Conclusion

Here, we introduced two new models that maintain the state-of-the-art while increasing computational

efficiency in subject identification and activation overlap measured with Dice AUC. We recommend

BrainSERF for those with high computational capability, whereas BrainSurfGCN is recommended for

those with more general-purpose resources. When we examined the performance of these models, we

discovered that both the models and the retest contrasts perform more poorly on delta contrast maps,

and the analysis of retest error versus tSNR suggests that there is a relationship between retest error and

tSNR that is particularly prominent in delta contrast maps. This suggests that data from delta contrast

maps are not as reliable as other forms of contrast maps. Additionally, a dive into the performance

of BrainSurfGCN revealed that neural engagement is an essential factor in determining the quality of

data. Lastly, an ideal clinical application of these methods would mean predicting data for unseen task

contrasts. Still, more work remains to be done on connecting synthesized task contrasts to individual

behavioral traits.
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A Supplementary Information

A.1 Additional Models Explored

A.1.1 BaggedSurfCNN and BaggedSurfGCN

In the development of BaggedSurfCNN, we adopt the core architectural framework of BrainSurfCNN Ngo

et al., 2022, ensuring consistency in model structure to facilitate a direct comparison of performance

metrics. The innovation in our approach lies in the application of a bagging ensemble methodology,

coupled with a 5-fold cross-validation training strategy. This combination is designed to enhance the

model’s generalization capability and mitigate overfitting, a common challenge in deep learning models

applied to neuroimaging data. For a comparison to our new architectures, we repeated the same approach

using BrainSurfGCN as well.

The 5-fold cross-validation process divides the available dataset into five distinct subsets. In each fold

of the cross-validation, four subsets are utilized for training, and the remaining subset is reserved for

validation. This procedure is repeated five times, with each subset serving as the validation set once,

ensuring that every data point contributes to both training and validation phases. Through this method,

we generate five fully trained BaggedSurfCNN models, each having been exposed to slightly different

training and validation data splits. This diversity in training conditions is key to the ensemble approach,

as it encourages the development of models with varied predictive strengths and biases Ghojogh and

Crowley, 2019.

Upon completion of the training phase, we employ a bagging strategy for ensemble prediction. This

involves aggregating the predictions from all five models for a given input to form a single ensemble

prediction. Specifically, we compute the average of the predicted task contrasts across all models. This

averaging process is predicated on the assumption that while individual models may make errors, the

ensemble, through averaging, is likely to converge towards a more accurate and robust prediction. This is

because errors made by individual models, assuming they are uncorrelated, are likely to cancel out when

averaged, thereby reducing the overall prediction error. The ensemble prediction for the task contrast,

thus, represents a consensus across the five models, mitigating the impact of any single model’s potential

biases or inaccuracies. In both of these bagged approaches, we noticed no significant improvements over

the existing training strategy.
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A.1.2 BrainSurfATN

The introduction of the Transformer architecture Vaswani et al., 2017 has revolutionized the field of

sequence modeling, especially within the domain of natural language processing (NLP). A cornerstone

of this architecture is the multi-head attention mechanism, which facilitates the modeling of complex

dependencies between sequence elements, such as words in a sentence. This mechanism enables the

model to focus on different parts of the sequence simultaneously, thereby capturing nuanced relationships

between tokens that are not necessarily adjacent to each other.

In the context of our research, we adapt the multi-head attention framework to the analysis of brain

surface meshes. Recognizing the potential of this mechanism to enhance the representation of spatial

data, we introduce a multi-head attention layer into the Residual Pooling Block of our model. This

adaptation is predicated on the conceptualization of the mesh’s vertices as a sequence, akin to tokens in

NLP. Each vertex represents a unique point on the brain’s surface, and the relationships between these

vertices are crucial for understanding the underlying anatomical and functional organization of the brain.

By implementing a multi-head attention layer, our goal was to contextualize each vertex within the

global structure of the mesh. This means that for any given vertex, the model can assess its significance

and relationships in the context of the entire mesh, rather than considering it in isolation or solely in

relation to its immediate neighbors. This approach allows for a more nuanced representation of the

brain’s surface, capturing both local and distant anatomical features. It is particularly advantageous for

tasks that require a comprehensive understanding of the brain’s geometry and functional connectivity, as

it enables the model to dynamically adjust the importance it assigns to each vertex based on the broader

context of the mesh sequence.
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A.2 Evaluation of Additional Models

Table 4: Subject identification test accuracy across varying ICs, MSE Only

ICs 15 25 50 100

BrainSurfCNN 75.5 75.9 75.7 76.2

BrainSERF 76.5 78.0 77.6 N/A

BrainSurfGCN 77.9 77.9 78.9 79.7

BrainSurfATN 57.9 55.2 42.0 37.2

BaggedSurfCNN N/A 61.9 N/A N/A

BaggedSurfGCN N/A 75.3 N/A N/A

Figure 9: Best model accuracy on all task contrasts, MSE Training Only

A.3 Additional Results of All Final Models

We have computed the Dice AUC for all tasks contrasts for the retest contrasts and the predicted

contrasts from all of the final models.
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Figure 10: Best model correlation across all task contrasts, MSE Training Only

Figure 11: Subject identification accuracy across all task contrasts.
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Figure 12: Dice scores for all final models across all task contrasts.
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Table 5: Dice AUC Across All Language, Relational, Social, Emotional, and Working Memory Tasks

Contrast Retest BrainSurfCNN BrainSERF BrainSurfGCN

LANGUAGE MATH 0.182 0.144 0.163 0.157

LANGUAGE STORY 0.176 0.153 0.162 0.167

LANGUAGE MATH-STORY 0.247 0.274 0.276 0.280

RELATIONAL MATCH 0.227 0.267 0.265 0.264

RELATIONAL REL 0.219 0.219 0.217 0.218

RELATIONAL MATCH-REL 0.138 0.115 0.118 0.105

SOCIAL RANDOM 0.259 0.258 0.259 0.260

SOCIAL TOM 0.271 0.298 0.300 0.305

SOCIAL TOM-RANDOM 0.125 0.144 0.145 0.142

EMOTION FACES 0.201 0.216 0.215 0.220

EMOTION SHAPES 0.195 0.19 0.192 0.197

EMOTION FACES-SHAPES 0.201 0.225 0.229 0.226

WM 2BK BODY 0.17 0.212 0.211 0.209

WM 2BK FACE 0.222 0.202 0.2 0.201

WM 2BK PLACE 0.153 0.27 0.27 0.267

WM 2BK TOOL 0.18 0.191 0.191 0.192

WM 0BK BODY 0.243 0.269 0.269 0.273

WM 0BK FACE 0.187 0.22 0.221 0.22

WM 0BK PLACE 0.144 0.258 0.257 0.252

WM 0BK TOOL 0.228 0.238 0.236 0.239

WM 2BK 0.249 0.261 0.261 0.259

WM 0BK 0.249 0.294 0.293 0.294

WM 2BK-0BK 0.142 0.137 0.139 0.141

WM BODY 0.249 0.277 0.276 0.276

WM FACE 0.218 0.234 0.233 0.233

WM PLACE 0.141 0.282 0.282 0.279

WM TOOL 0.227 0.222 0.22 0.221

WM BODY-AVG 0.151 0.141 0.14 0.149

WM FACE-AVG 0.126 0.192 0.199 0.193

WM PLACE-AVG 0.105 0.196 0.199 0.19

WM TOOL-AVG 0.125 0.137 0.136 0.132
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Table 6: Dice AUC Across All Motor and Gambling Tasks

Contrast Retest BrainSurfCNN BrainSERF BrainSurfGNN

MOTOR CUE 0.207 0.213 0.217 0.217

MOTOR LF 0.154 0.21 0.209 0.208

MOTOR LH 0.152 0.155 0.154 0.149

MOTOR RF 0.136 0.191 0.193 0.195

MOTOR RH 0.135 0.145 0.143 0.145

MOTOR T 0.155 0.205 0.209 0.202

MOTOR AVG 0.15 0.219 0.22 0.218

MOTOR CUE-AVG 0.197 0.165 0.167 0.172

MOTOR LF-AVG 0.144 0.153 0.154 0.155

MOTOR LH-AVG 0.135 0.172 0.172 0.167

MOTOR RF-AVG 0.125 0.135 0.137 0.137

MOTOR RH-AVG 0.126 0.146 0.144 0.149

MOTOR T-AVG 0.151 0.157 0.157 0.158

GAMBLING PUNISH 0.272 0.251 0.249 0.252

GAMBLING REWARD 0.246 0.206 0.205 0.209

GAMBLING PUNISH-REWARD 0.129 0.098 0.097 0.104
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Table 7: Spatial correlation of percentage of subjects showing top 10% activation between predicted and
ground truth contrasts associated language, relational, social, emotional, and working memory tasks.

Contrast Retest BrainSurfCNN BrainSERF BrainSurfGCN

LANGUAGE MATH 0.772 0.581 0.701 0.717

LANGUAGE STORY 0.843 0.691 0.757 0.783

LANGUAGE MATH-STORY 0.954 0.908 0.907 0.914

RELATIONAL MATCH 0.975 0.958 0.959 0.955

RELATIONAL REL 0.974 0.963 0.965 0.958

RELATIONAL MATCH-REL 0.626 0.554 0.558 0.591

SOCIAL RANDOM 0.977 0.939 0.941 0.938

SOCIAL TOM 0.973 0.932 0.932 0.933

SOCIAL TOM-RANDOM 0.769 0.724 0.73 0.751

EMOTION FACES 0.943 0.902 0.908 0.901

EMOTION SHAPES 0.934 0.901 0.902 0.897

EMOTION FACES-SHAPES 0.915 0.796 0.807 0.792

WM 2BK BODY 0.922 0.918 0.919 0.91

WM 2BK FACE 0.931 0.912 0.911 0.905

WM 2BK PLACE 0.948 0.937 0.939 0.934

WM 2BK TOOL 0.919 0.895 0.896 0.888

WM 0BK BODY 0.93 0.905 0.905 0.9

WM 0BK FACE 0.916 0.88 0.881 0.869

WM 0BK PLACE 0.949 0.928 0.931 0.926

WM 0BK TOOL 0.946 0.931 0.932 0.924

WM 2BK 0.954 0.945 0.945 0.939

WM 0BK 0.962 0.949 0.95 0.944

WM 2BK-0BK 0.833 0.815 0.82 0.821

WM BODY 0.946 0.931 0.93 0.924

WM FACE 0.939 0.923 0.923 0.915

WM PLACE 0.956 0.946 0.948 0.944

WM TOOL 0.95 0.933 0.934 0.926

WM BODY-AVG 0.792 0.72 0.722 0.718

WM FACE-AVG 0.905 0.815 0.823 0.813

WM PLACE-AVG 0.885 0.839 0.841 0.829

WM TOOL-AVG 0.639 0.554 0.569 0.577
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Table 8: Spatial correlation of percentage of subjects showing top 10% activation between predicted and
ground truth contrast sets associated with motor and gambling tasks.

Contrast Retest BrainSurfCNN BrainSERF BrainSurfGNN

MOTOR CUE 0.93 0.858 0.864 0.869

MOTOR LF 0.887 0.839 0.845 0.846

MOTOR LH 0.885 0.757 0.764 0.75

MOTOR RF 0.891 0.827 0.832 0.839

MOTOR RH 0.87 0.789 0.795 0.788

MOTOR T 0.903 0.815 0.814 0.826

MOTOR AVG 0.886 0.851 0.855 0.851

MOTOR CUE-AVG 0.938 0.887 0.892 0.897

MOTOR LF-AVG 0.851 0.707 0.717 0.712

MOTOR LH-AVG 0.891 0.768 0.762 0.776

MOTOR RF-AVG 0.845 0.673 0.686 0.69

MOTOR RH-AVG 0.857 0.725 0.723 0.72

MOTOR T-AVG 0.893 0.664 0.672 0.701

GAMBLING PUNISH 0.932 0.919 0.922 0.911

GAMBLING REWARD 0.945 0.931 0.936 0.92

GAMBLING PUNISH-REWARD 0.391 0.182 0.179 0.19
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