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Abstract  

The brain and behavior are under energetic constraints, which are likely driven by mitochondrial 

energy production capacity. However, the mitochondria-behavior relationship has not been 

systematically studied on a brain-wide scale. Here we examine the association between 

mitochondrial health index and stress-related behaviors in mice with diverse mitochondrial and 

behavioral phenotypes. Miniaturized assays of mitochondrial respiratory chain function and 

mitochondrial DNA (mtDNA) content were deployed on 571 samples from 17 brain regions. We 

find specific patterns of mito-behavior associations that vary across brain regions and 

behaviors. Furthermore, multi-slice network analysis applied to our brain-wide mitochondrial 

dataset identified three large-scale networks of brain regions. A major network composed of 

cortico-striatal regions exhibits highest mitochondria-behavior correlations, suggesting that this 

mito-based network is functionally significant. Mito-based networks can also be recapitulated 

using correlated gene expression and structural connectome data, thereby providing convergent 

multimodal evidence of mitochondrial functional organization anchored in gene, brain and 

behavior. 
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Introduction  

The shaping of behaviors by life experiences is driven by energetically demanding 

circuitry across the brain (1). The brain’s enormous energetic demand is mainly met by ATP 

produced through oxidative phosphorylation (OXPHOS) within mitochondria (2). As a result, 

mitochondria influence multiple aspects of brain development and function ranging from 

dendritic and axonal branching (3, 4), remodeling of gene expression (5), regulation of 

neurotransmitter release and excitability in mature synapses (6-8), neurogenesis (9), and 

inflammation (10). Thus, the mounting molecular and functional evidence that the brain is under 

energetic constraints (11, 12) suggests that a fundamental understanding of brain mitochondrial 

biology is essential for uncovering the basis of brain function and behavior. 

Mitochondria are small, dynamic, multifunctional organelles with their own genome that 

generate ATP via the respiratory chain (RC) (13). But not all mitochondria are created equal. 

Mitochondria subserving different cellular demands (i.e., in different cell types) have different 

relative molecular compositions and functional phenotypes (14-17). Therefore, developing a 

comprehensive understanding of the association between mitochondria and animal behavior 

calls for assessments of multiple mitochondrial features, across multiple brain regions. By 

analyzing mitochondrial features across multiple brain regions simultaneously, we can also 

potentially uncover unknown brain “mitochondrial circuits”. This idea aligns with our evolving 

understanding of large-scale brain circuitry and metabolism (11, 18), and of the network 

distribution of neural activity achieved using brain-wide, high spatial resolution methods (e.g., 

MRI-based functional and structural connectivity maps) (19, 20). Although a similar degree of 

resolution for mitochondrial phenotyping is not feasible with current technologies, miniaturization 

of biochemical and molecular mitochondrial assays (21) open new possibilities to map 

mitochondria-to-behavior across multiple cortical and sub-cortical regions in the same animal.   
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Both animal behaviors and mitochondrial health exhibit naturally occurring and acquired 

(i.e., experience-dependent) variation, providing an opportunity to map their associations. For 

example, behaviorally, exposure to social stress such as chronic social defeat predictably 

increases potential threat vigilance and social avoidance (22), but animals differ in their 

vulnerability/resilience to these stress-induced changes in behavior (23, 24). Experimental 

challenges aimed at modeling neuroendocrine disturbances resulting from chronic stress, such 

as chronic exposure to corticosterone (CORT), also induce avoidance behaviors associated 

with recalibrations in specific brain circuitry (25), gene expression (26, 27), and anatomical 

plasticity (i.e., atrophy) in stress-sensitive brain regions like the hippocampus (28). In relation to 

mitochondria, a separate body of literature similarly documents naturally-occurring mitochondrial 

variation (21, 29), as well as stress-induced functional recalibrations in mitochondria that occur 

within days to weeks of stress exposure (30-32) (meta-analysis in (33)), potentially linking 

mitochondrial health to behavior. More direct causal experiments show that mitochondrial RC 

function directly influence the brain and specific behavioral domains including working memory 

(34, 35), social dominance (29, 36, 37) and anxiety-related behavior (4). Targeted mitochondrial 

defects even cause mood disorder-like phenotypes in animals (38) and are likely implicated in 

the etiology of psychiatric, neurological and degenerative disorders in humans (39). Moreover, 

in vivo human brain metabolic imaging studies show that energy metabolism in specific brain 

areas (e.g., nucleus accumbens, NAc) predict performance and anxiety (40-42). Thus, current 

evidence positions mitochondria as an upstream modulator of brain function and behavior.  

Although the importance of mitochondria for brain structure and function is unequivocal, 

we lack an understanding of potential differences in mitochondria across different brain regions, 

therefore calling for a more complete mapping of region-specific brain mitochondrial function in 

relation to behavior. To address the hypothesis that mitochondrial health in specific brain 

regions is associated with behaviors, we have further miniaturized existing biochemical and 
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molecular assays of mitochondrial RC function for sub-milligram tissue samples and deployed 

them across 17 cortical and sub-cortical brain regions in mice with a wide range of stress-

enhanced behavioral phenotypes, quantified through four behavioral tests. Using network-based 

connectivity analysis, we also sought to explore mitochondrial properties across brain regions, 

finding initial evidence that mouse brain mitochondria specialize as distinct functional networks 

linked to behavior. Further, we use gene co-expression and structural/anatomical connectivity 

data, which anchor the newly observed mitochondrial circuits into other modalities. 

Results 

Miniaturization of mitochondrial assays for sub-milligram resolution  

Although enzymatic activity assays directly reflect the capacity of RC complexes and 

therefore energy production capacity, currently available assays suffer from low throughput that 

preclude a multi-region, brain-wide analysis in dozens of animals. Building from our previous 

efforts to scale throughput of mitochondrial biochemical assays (21), here we miniaturized and 

optimized assays for 96-well plate format to establish the lowest detection limit for mouse brain 

tissue. With this optimized platform, we can quantify the activities of RC complex I (CI, NADH 

dehydrogenase), complex II (CII, succinate dehydrogenase), and complex IV (CIV, cytochrome 

c oxidase) enzymatic activities, as well as the Krebs cycle enzyme citrate synthase (CS, a 

marker of mitochondrial content) in two 1mm-diameter, 200μm deep tissue punches. This 

represents <1mg of tissue (estimated 0.33mg), over an order of magnitude more sensitive than 

currently available methods.  

In our pipeline, the same biological sample used for enzymatic activities is also used to 

quantify mtDNA abundance, both by i) the classical metric relative to the nuclear genome – 

mtDNA/nDNA ratio, termed mtDNA copy number (mtDNAcn) (43), and ii) per tissue volume 

(mtDNA copies per mg), termed mtDNA density. From our qPCR data of nuclear genome 

abundance across the brain, independent of the mtDNA, we find that cellular density varies by 
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up to 8.5-fold between brain regions (highest: cerebellum, lowest: visual cortex). Unlike in 

peripheral tissues, this remarkably large variation in neuronal and glial cells somata density 

significantly skews mtDNAcn estimates. Figure S1 shows the inter-correlations of mtDNAcn 

and mtDNA density in relation to enzyme activities, establishing that mtDNA density is a more 

appropriate and generalizable estimate of mitochondrial genome abundance across mouse 

brain regions. 

We also combine these five primary mitochondrial features into a mitochondrial health 

index (MHI) by dividing RC function (CI+CII+CIV) by mitochondrial content (CS+mtDNA 

density), thus creating an index of energy production capacity on a per-mitochondrion basis (21) 

(See Methods for details). Although each of the six resulting features are partially correlated 

with other features, the proportion of shared variance between individual features across brain 

regions is 31-64%, indicating that they each contribute some non-redundant information about 

mitochondrial phenotypes, which can be deployed at scale. 

Our study design aimed to profile animal-to-animal differences in mitochondrial health 

across a broad set of brain regions that are associated with anxiety-related behavior, social 

behaviors, cognition, and mitochondrial disorders, and to relate these measures to each 

animal’s behavioral phenotypes. In total, we enzymatically and molecularly phenotyped 571 

samples covering 17 cortical, sub-cortical and brainstem brain regions isolated by bilateral 

punches at defined stereotaxic coordinates (Table 1, Figure S2B). To eventually compare the 

specificity of our findings related to brain and behavior, 5 peripheral tissues were also collected 

and analyzed from each animal, which we expected to show somewhat related but more 

modest associations with behavioral outcomes.  

Protein levels do not reflect enzymatic activity 

We initially explored if RC protein abundance is a viable surrogate for mitochondrial RC 

activity (29), which could theoretically allow high spatial resolution imaging of the entire brain. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.02.446767doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446767
http://creativecommons.org/licenses/by/4.0/


 7

We focused on the cerebellum due to its well-defined cellular composition and laminar 

organization, where the Purkinje cell layer is flanked by molecular and granular layers (14) 

(Figure S3A). Compared to protein levels, enzymatic activity ultimately determines 

mitochondrial RC function and energy production capacity and consequently should be 

regarded as the most representative measure of mitochondrial function. In consecutive 

cerebellar slices, we compared SDH (CII) enzymatic activity to the protein abundance of a RC 

complex II subunit, SDHA (succinate dehydrogenase, subunit A), for which a validated high-

affinity antibody is available. Enzyme activity did not correlate with protein abundance for any of 

the three cerebellar layers (proportion of shared variance, r2=0.02-0.07), indicating that protein 

abundance is not an appropriate surrogate for enzymatic activity (Figure S3B). Reasons for this 

finding could include the action of post-translational modifications, stoichiometry of the four SDH 

subunits, or the biochemical context that drive activity independent of protein content (e.g., 

(44)). Therefore, we focus downstream analyses on direct measures of mitochondrial RC 

enzymatic activity and mtDNA density.   

Diversity of mitochondrial RC activities between animals 

We sought to examine mitochondria-behavior associations in a cohort of adult male mice 

exhibiting naturally-occurring behavioral and mitochondrial variation. Our goal was to identify 

robust and generalizable associations between mitochondrial function and behavior, rather than 

potential correlations that would exist among only subgroups of animals (naïve or stressed). 

Therefore, to further extend the spectrum of mito-behavior variation using well-characterized 

rodent stress models, subgroups of the cohort were either chronically administered 

corticosterone (CORT) (45), or exposed to chronic social defeat stress (CSDS) (46) (Figure 

S2A). To create further diversity among groups, half of the CSDS mice were allowed to recover 

for two months. Based on previous work (23, 47), we also expected naturally-occurring 

behavioral and brain molecular phenotype differences between animals that are resilient or 
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susceptible to CSDS (based on the social interaction test; see Methods) (48). The naturally 

occurring variation in mitochondria and behavior plus the effects of various exposures provides 

a strong test of robustness for our hypothesis, which is that across a diverse population of mice, 

mitochondrial health in specific brain regions are consistently associated with behaviors. 

Across our cohort of inbred mice with a range of exposures, a wide range of 

mitochondrial health was observed. The average variation for mitochondrial activities (excluding 

MHI), across all animals and all 17 brain regions was 36% (coefficient of variation, C.V.) (Figure 

S4B). For any given brain region, the variation in mitochondrial health between mice reached up 

to 2.9-fold between the animals with the lowest and highest activities. This means that for a 

given brain region, there are large mouse-to-mouse differences in mitochondrial content and RC 

activity, even among inbred control mice not exposed to stressors (Figure S4). Relative to brain 

regions, peripheral tissues showed about a third less variation between animals, with an 

average 25% C.V. (Figure S4D).  

To verify that interventions used to enhance naturally-occurring variation in mitochondria 

were effective, we compared mitochondrial features in mice exposed to CORT and CSDS 

relative to naïve mice. The effects of CORT and CSDS on mitochondrial health were quantified 

as standardized effect sizes (Hedges g) and shown in (Figure 1A, detailed in Figure S5). Both 

interventions significantly altered mitochondrial features in a region-specific manner. CORT-

treated mice had higher mitochondrial activities than non-stressed animals in ~60% of brain 

regions, whereas CSDS animals had lower activities in ~82% of brain regions (Figure 1D), 

suggesting opposing effects of these two different stress models on brain mitochondria. The 

amygdala showed the greatest CORT-induced increase in CII enzymatic activity (+49%, 

p<0.05), whereas the periaqueductal gray (PAG) showed the largest CSDS-induced decrease 

in CI activity (-42%, p<0.05). 
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In order to determine if brain regions were co-regulated in their stress-induced 

mitochondrial recalibrations, we employed a topological data analysis (TDA)-based Mapper 

approach. Mapper is a variant of nonlinear dimensionality reduction (manifold learning) methods 

that produces a graph or network embedding of the high-dimensional data (a.k.a. shape graph) 

while recovering projection loss using an additional partial clustering step (49, 50). When 

applied to mitochondrial features, separately for each group, the shape graphs revealed 

differences in regional mitochondrial recalibrations across the two groups (Figure 1E-F). This 

was quantified using a graph-theoretical measure of participation coefficient (PC) (51), where 

higher values of PC indicate uniformly distributed connectivity across regions (integrated 

network) and lower values indicate a segregated connectivity pattern (Figure 1G). CORT-

induced mitochondrial recalibrations were relatively more region-specific (or segregated) 

whereas CSDS caused a more coherent response across the brain (or integrated). 

 Although we were not powered to make statistical comparisons between susceptible 

and resilient mice, we did observe relatively large differences in effect sizes (g > 0.8) in 

mitochondrial recalibrations between the groups (Figure S6). Additionally, compared to non-

recovered CSDS mice, animals who were allowed to recover from CSDS exhibited only 

marginal mitochondrial health changes in a limited number of brain regions, as visualized by the 

Mapper-generated shape graphs (Figure S7). Overall, these results confirm the existence of 

naturally-occurring and acquired variation in brain mitochondrial health between animals, 

providing a strong basis to test the existence of conserved associations with behaviors. 

Diversity of anxiety and depressive like behaviors 

Just as there was a spectrum of mitochondrial health across mice, as expected from 

previous work, animals also naturally exhibited large variation in their behavioral phenotypes. 

Behavioral tests included potential threat (“anxiety”) monitored by the open field test (OFT) and 

elevated plus maze (EPM), hyponeophagia monitored by novelty suppressed feeding test 
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(NSF), and approach-avoidance conflict using the social interaction test (SI). Because specific 

behavioral tests are generally administered in conjunction with specific interventions (CORT, 

CSDS), some animals were only tested on some and not all behaviors. Both CORT and CSDS 

produced the expected elevation in anxiety-related behavior compared to naïve mice (Figure 

S8). Results from the behavioral tests either correlated moderately with each other (EPM and 

OFT, r=0.60), were not correlated (OFT and NSF, r=-0.02), or were negatively correlated (OFT 

and SI, r=-0.46). This indicated that each test captures different aspects of behavior, thereby 

providing a robust basis to examine how different aspects of behavior might relate to brain 

mitochondrial health.  

Brain mitochondrial health correlates with specific behaviors 

We next evaluated the extent to which mitochondrial health in different brain regions was 

associated with behavior (Figure 2A). Behavioral scores were transformed so that higher 

scores on each test indicate higher avoidance/anxiety-like behaviors (as in (23)) (See Methods, 

Figure S8). Behavioral scores were then correlated with mitochondrial function across the 6 

mitochondrial features, where higher values indicate higher mitochondrial content or functioning. 

A frequency distribution of the effect sizes for all mitochondrial-behavior pairs revealed a 

significant non-zero correlation between MHI in the 17 brain regions and behavior on OFT 

(p<0.01), EPM (p<0.0001), and SI (p<0.0001), but not for NSF (Figure 2B, frequency 

distributions for the other mitochondrial features are shown in Figure S9). Time to feed on the 

NSF was capped at 600 seconds, so the correlations are less precise than for other tests. To 

better understand which regions were driving the direction and magnitude in the distributions, 

we then examined the patterns of correlations for all 17 brain regions, for all six mitochondrial 

features, across the four behavioral tests (Figure 2C).  

For both OFT and EPM, higher mitochondrial health in the majority of brain regions was 

correlated with higher avoidance scores (average r=0.12, 0.34 respectively). The highest 
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correlations were of 0.51 for M1 CII and OFT (p=0.025, linear regression), and 0.92 for NAc 

MHI and EPM (p=0.0005). For NSF there was more heterogeneity between brain regions, with a 

similar number of positive and negative correlations. Finally, for SI, we observed the opposite 

relationship; animals with higher mitochondrial functioning generally displayed greater sociability 

(lower social avoidance) (average r=-0.21, highest for MHI in SN and SI, r=-0.78, p=0.0035). 

Interestingly, of the six mitochondrial features, the strongest mito-behavior correlations (for 3 out 

of 4 behaviors) were for MHI, which may reflect the superiority of MHI as an integrative measure 

of mitochondrial health over individual enzymatic and molecular features.  

As expected, the average correlation between mitochondrial function and behaviors was 

significantly more consistent for brain mitochondria than for mitochondria in peripheral tissues 

(Figure 2D). This finding has two implications. First, it reinforces the specificity of these mito-

behavior findings for the brain. Second, it implies that mitochondria across the brain and other 

tissues within an individual mouse are not equivalent, and differentially regulated. This naturally 

raised the question whether specific brain regions within an animal could also exhibit 

independently regulated mitochondrial properties. In other words, whether there exist a 

functional organization of the brain into separate networks based on mitochondrial properties.  

Mitochondrial function-based organization of the brain 

 To address this question, we first asked whether mitochondrial features in each tissue 

were independent or correlated with other tissues. Using the same rationale that underlie 

functional connectivity analysis in fMRI data (52-54), we first generated a correlation-based 

similarity matrix of all mitochondrial features across examined brain regions and non-brain 

tissues (Figure 3A). Within the 17 brain regions, mitochondrial features were generally 

positively correlated (average r=0.22, p<1-100, two sample t-test), with a few exceptions. Higher 

mitochondrial activities in one brain region generally also implies higher activities in other 

regions (p<1-82, 1-sample t-test). Further, a modular structure was also apparent, within brain 
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and peripheral regions, such that mitochondrial features within each region was more similar 

than with others regions (p<0.0001, permutation test); Figure 3B also shows the average 

correlations of each mitochondrial feature with other features among all brain regions – RC 

enzymes were most strongly co-regulated. To compute how similar each region is to other 

regions, we computed nodal degree (i.e., average inter-regional correlation) for all regions. 

Nodal degree, or global connectivity, was highest in the cerebellum (average r=0.34) and lowest 

in the brainstem vestibular nucleus (r= 0.05) (Figure 3C).  

As suggested above from the divergence between brain regions and peripheral tissues 

in the mito-behavior correlation patterns, the mitochondrial features in peripheral tissues were 

not correlated with brain mitochondria (average r=0.02) or with other peripheral tissues 

mitochondria (average r=-0.03) (Figure 3D). The lack of association between brain and non-

brain tissues of the same animals suggest that MHI (as well as content and RC activities) is not 

a ubiquitous animal-level feature, but rather relatively independently defined in the brain, and 

further specified within different brain regions.  

Given the positive connectivity across the brain and recent evidence of circuit-level 

metabolic coupling in the Drosophila brain (12), we examined whether certain regions exhibited 

particularly strong mitochondrial feature co-regulation. Functional brain networks in the living 

brain are defined by synchronous activity patterns (e.g., default-mode network, fronto-parietal 

network). Similarly, we reasoned that connectivity patterns of mitochondrial features (based on 

single measurements) could reflect networks of brain regions with similar bioenergetic 

properties. To examine this hypothesis with a framework agnostic to anatomical categorization 

and inclusive of all mitochondrial features, we performed multi-slice community detection 

analysis (55), with mitochondrial features represented in six separate layers (Figure 3E). 

Categorical multi-slice community detection allowed for detecting cohesive groups of brain 

regions, or communities, that: i) are more similar to each other than they are to the rest of the 
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regions, and ii) have cohesion converging across the six layers of mitochondrial features. 

Representing all 17 brain regions, and across 6 mitochondrial features, we found 3 separate 

communities, or networks: 1) Cortico-striatal network: CPu, visual, motor, mOFC, mPFC and 

NAc; 2) Salience/Spatial navigation network: cerebellum, vestibular nuclei, VTA, thalamus, 

hippocampus (CA3), and dentate gyrus (dorsal and ventral); and 3) Threat response network: 

amygdala, hypothalamus, substantia nigra, and periaqueductal grey (Figure 3F).  

To examine whether this functional organization of the brain revealed using 

mitochondrial features is also evident cross-modally, we used Allen Brain Atlas datasets of 

brain-wide gene co-expression (56) as well as EYFP-labeled axonal projections that define the 

structural connectome (57) in the same mouse strain. Specifically, we examined whether gene 

expression correlations and structural connectivity within brain regions that are functionally 

grouped together as a network, based on mitochondrial features, is higher than expected by 

chance. We used two independent graph theoretical metrics: strength fraction (S.F.) (58) and 

quality of modularity (Q_mod) (59), to examine whether similar communities exist in gene and 

structural connectivity data. Using permutation testing, we randomly shuffled community 

structure of brain regions 10,000 times to determine whether the community structure derived 

from mitochondrial features is also evident in gene co-expression and structural connectivity 

data. Both strength fraction and quality modularity statistics suggest that mitochondria-derived 

networks also have higher similarity in gene co-expression and structural connectome data than 

expected by chance (S.F.-gene-coexpression, p=0.020; S.F.-structural connectivity, p=0.029; 

Q_mod-gene-coexpression, p=0.008); and Q_mod-structural connectivity, p=0.015) (Figure 

S10). Hence, this provides convergent multimodal evidence of mitochondrial functional 

organization overlapping with gene expression and the structural connectome. 

Brain region clusters’ contributions to the mitochondrial-behavioral correlation 
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Finally, to understand the potential significance of this effective brain-wide mitochondrial 

connectivity in relation to animal behavior, we used our mitochondria-derived network results to 

partition the brain into three networks, and then analyzed the ability of each network to linearly 

predict behaviors. The mitochondrial-behavior correlations varied both in strength and direction 

between the three networks. The average mitochondrial activity in the cortico-striatal network 

consistently showed the strongest average correlations with behaviors measured in the OFT, 

EPM, and SI tests (r=0.20, 0.58, -0.41, respectively), whereas the spatial navigation network 

exhibited the weakest average correlations for the same three behaviors (r=-0.03, 0.18, -0.14) 

(Figure 3G). Together, these results suggest the presence and functional significance of brain-

wide mitochondrial networks, embedded within existing neural circuitry in the mouse brain. 

 

Discussion 

Using a high-throughput approach to functionally phenotype hundreds of brain samples 

from a heterogenous mouse cohort, we have defined brain-wide associations between 

mitochondrial health and behaviors. Combined with previous findings (29, 32), the diverging 

mito-behavior associations between brain regions, and between brain and non-brain tissues, 

brought to light the possibility that different brain regions might exhibit different mitochondrial 

phenotypes. Examining the network characteristics of mitochondrial features across the brain 

provides evidence for the modular distribution of mitochondria across cortical and sub-cortical 

regions, and their relevance to depression-like and anxiety-like behaviors. Based on these data, 

we conclude that mouse brain mitochondria may exist as behaviorally-relevant networks 

overlapping with, but distinct from, other modalities such as gene expression and structural 

connectivity.  

Utilizing CORT and CSDS interventions to induce behavioral variation in the population 

also allowed us to compare the effects of these two interventions on mitochondrial functioning. 
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Different brain regions were found to respond, in some cases, in opposite directions, particularly 

after exposure to CORT. This could be related, among other factors, to regional differences in 

glucocorticoid and mineralocorticoid receptor density. In contrast to CORT, the recalibrations of 

brain mitochondria to CSDS was more uniform, with the majority of brain regions exhibiting a 

coordinated reduction in most mitochondrial features. These results highlight a significant 

difference between the effects of behavioral stress and endocrine interventions on mouse brain 

bioenergetics, which should be taken into account when selecting and interpreting rodent 

models of chronic stress.  

Previous research in rodents showed that mitochondrial function in specific brain 

regions, such as the NAc, is linked to complex behaviors such as social dominance and anxiety 

(4, 29). Here we confirm the strong correlation between NAc mitochondrial health and anxious 

behavior, as the strongest correlation between EPM-based anxiety-like behavior and MHI is in 

the NAc. We also extend this finding to show that mitochondrial health is also linked to 

behaviors across distributed brain networks. Similar to the conceptual shift from regional and 

cellular perspectives towards distributed brain networks and neuronal ensembles (60, 61), our 

discovery advances the notion that mitochondria may regulate brain function and behavior 

through distributed mito-networks. This notion is consistent with recent evidence of metabolic 

coupling among distributed patterns of behavior-related neural activity in Drosophila (12). 

While we cannot directly explain the apparent harmonization of mitochondrial function 

across brain regions, it may arise from three main factors. First, mitochondria could respond to 

differences in neuronal circuit functioning, in agreement with observed coupling of neuronal and 

metabolic activities (12), such that the cellular infrastructure of neural circuits that fire together 

not only wire together, but also generate similar mitochondria. A second possibility is that brain 

regions which are regularly co-activated, i.e., within the same functional networks, harbor similar 

levels of receptors for neuroendocrine factors (stress and sex steroids) known to influence 
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mitochondrial biogenesis and/or functional specialization (62, 63). A third possibility would 

involve differences in metabolites and substrates that contribute to mitochondrial functioning 

and regulation, arising similarly among co-activated brain regions. These and other potential 

factors underlying the modularity of mitochondria within the mouse brain remain to be 

investigated. 

 From a mitochondrial biology perspective, our data highlights a potentially important 

distinction between mitochondrial content (abundance of mitochondria) and RC activity 

normalized to mitochondrial content, such as the MHI (respiratory chain activity per 

mitochondrion). These frozen tissue measurements naturally reflect the maximal functional 

capacity of the mitochondria RC, rather than their actual in vivo rates, which are likely driven by 

neural activity. Interestingly, the behavioral correlations with content features (mtDNA density 

and CS activity) for social avoidance behavior were similar to one another, and differed 

somewhat from RC enzymes. Experimentally, the specificity of these findings highlights the 

value of parallel assessments of multiple mitochondrial features reflecting unique mitochondrial 

properties (i.e., mitochondria are not all created equal). In neuroimaging terms, the composite 

MHI can be understood as the mitochondrial analog to fMRI-based multi-variate pattern analysis 

(MVPA) (64, 65), where multiple features (mitochondrial enzymes for MHI, voxels for MVPA) are 

combined to create a more stable and statistically accurate metric of the desired outcome 

(mitochondrial health for MHI, or brain activation for MVPA). Moreover, mtDNAcn has previously 

been assessed across multiple brain regions (66), but our results here go beyond in showing 

that quantifying mtDNA content on a per-cell basis (mtDNA:nDNA ratio) is heavily skewed by 

cellularity. As such, it is driven by how many cell bodies are present in the tissue, and correlates 

poorly with both mitochondrial content and RC activity. Therefore, our data reinforce the notion 

that mtDNAcn on its own is not a valid measure of mitochondrial health (67, 68). In the mouse 
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brain, our findings shows that mtDNA density per unit of volume (rather than per cell) is a more 

biologically meaningful mitochondrial feature.  

By examining mitochondrial features across the mouse brain, we discovered a moderate 

level of global functional connectivity across mitochondria in most brain regions, but not among 

peripheral tissues (Figure 3). By functional connectivity, we do not imply that mitochondria are 

directly connected to each other in the same way that neurons project and chemically 

(de)activate each other; but rather than they share functional properties. As a biological property 

of the system, if mitochondrial function was directly determined by genetic and physiological 

factors, the logical expectation is that mitochondria within different organs of the same organism 

should exhibit a high degree of coherence (i.e., correlated with each other). In other words, the 

animal with the highest mitochondrial content or RC activity in the mOFC should also be one of 

the highest in other brain regions and tissues. But our results strongly disprove this point. 

Similarly, previous work on multiple human tissues showed that mtDNAcn was not significantly 

correlated between organs, including across three brain regions (69). Here we extend these 

data to 17 brain regions and 5 non-brain tissues, demonstrating that identified correlations are 

relatively modest (the highest is r=0.31 for the cerebellum, or less than 10% of shared 

variance). Some brain regions exhibited no correlation with other regions. The most 

parsimonious explanation is that animals differentially recruit different circuitry, which 

secondarily shape their mitochondria. However, considering theories that stipulate that the brain 

strives for maximal energetic efficiency (1), we also cannot exclude the possibility that a limited 

quantity of resources (i.e., mitochondrial function) is available within the brain or the whole 

organism, which are distributed unequally in an activity-dependent manner among different 

organ systems, functional networks, and individual brain regions. Thus, different animals may 

achieve an optimal balance of systemic and neural function through specific combinations of 

mitochondrial activity in different brain regions, a possibility that remains to be tested. 
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In trying to better understand why certain regions displayed stronger brain-wide 

connectivity than others, we discovered mitochondria-based communities, or networks of brain 

regions. Interestingly, we observe some parallels in our mitochondria-derived networks with 

established large-scale networks. For example, the cortico-striatal network identified includes 

the CPu, NAc, mOFC, mPFC, and motor and visual cortex, which are implicated in decision 

making and executing actions. The second identified network (Cereb, VN, VTA, Thal, CA3, DGv 

and DGd) is the most heterogenous but comprised of regions that are known to be connected 

and involved in salience and spatial navigation  (70). Lastly, the final circuit is made up of limbic 

and limbic-associated regions (Amyg, Hypoth, PAG and SN) involved in threat responses (71, 

72). In comparing these mitochondria-derived networks to gene expression and structural 

connectome data we found that the communities significantly overlap across modalities, but are 

not identical. Finally, each network’s mitochondrial health exhibited different associations with 

behavioral responses. Unsurprisingly, the cortico-striatal network explained the greatest 

proportion of variance in behavior, increasing the likelihood that the identified large-sclae 

mitochondrial networks are functionally relevant. In our view, this novel perspective should 

provide a basis to further delineate the functional brain-wide organization of mitochondria. 

Until now, the methods used to reveal neurobiological and metabolic networks in 

mammals have typically been through indirect functional and structural connectivity analysis 

(18). Here we have developed a scalable approach to examine bioenergetic, and more 

specifically mitochondrial features across a large number of brain regions in mice with pre-

defined behavioral phenotypes. Further, we showed that bioenergetic connectivity was tightly 

linked with gene co-expression and structural connectivity, thereby providing converging 

evidence of mitochondria-based networks across modalities. This study synergizes with recent 

work in Drosophila (12), providing the technical and empirical foundation to bring mitochondrial 

biology into brain-wide, network-based models of neural systems in mammals (19, 20). Applied 
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to mitochondria, network-based analytics will contribute to develop more accurate maps, and 

eventually an understanding of what determines mitochondrial and metabolic properties across 

interacting neural circuits. Developing a spatially-resolved understanding of brain mitochondrial 

biology in diverse populations of animals and humans should help to resolve the energetic basis 

of brain function and behavior.  
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Methods 

Animals 

This study was carried out in accordance with NIH Guidelines, and was approved by the 

Institutional Animal Care and Use Committee (IACUC) at New York State Psychiatric Institute. 

Adult (52 weeks old) C57BL/6J male mice were obtained from Jackson Laboratories (n=29). 

Three month-old CD1 retired breeder male mice were obtained from Charles River, and were 

used as the aggressors in the social defeat model.  

Chronic Social Defeat Stress (CSDS) 

Aggressors Prescreening: All CD1 mice used in the experiment were pre-screened for 

aggressive behaviors as previously described (47). During a three-day screening procedure, a 

novel C57BL/6J mouse was placed in the cage of the CD1 mouse for 3 min. C57BL/6J 

screener mice were not further used in the study. The latency of the CD1 mouse to attack the 

C57BL/6J screener mouse was recorded. CD1 mice that attacked in less than 1 minute on at 

least the last two consecutive screening days were considered to be aggressive.  

Experimental Groups: Thirteen C57BL/6J mice underwent social defeat stress, while 6 

remained in their cages, to serve as the control group. Animals were randomly assigned to 

these groups. One mouse subjected to social defeat died of unknown causes during the 

duration of the experiment. Of the remaining 12 social defeat mice, half (n=6) were sacrificed 

two days after the completion of the stressor, and they are referred to as the ‘stressed’ CSDS 

group. Three control mice were sacrificed at the same time. The other half of the CSDS mice 

(n=6) along with 3 control mice, were allowed an 8.5 weeks (59 days) stress recovery period 

prior to sacrifice. This group is referred to as the ‘recovered’ group. Animals were selected for 

the recovery group from the CSDS group so that there was an even ratio of susceptible to 

resilient mice in the ‘stressed” and ‘recovered’ groups.  
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Social Defeat Paradigm: Adult experimental male C57BL/6J mice (n = 13) were exposed 

to a CSDS paradigm daily, for 10 days. The experimental C57BL/6J mice were placed in the 

cage of a new CD1 aggressor mouse for 5 minutes every day, for 10 consecutive days. After 

the 5 minutes of physical defeat, the C57BL/6J mice were housed in the same cage as the CD1 

aggressor, with a perforated plexiglass divider to separate them for 24 hours. After the 10 days 

of defeats, experimental C57BL/6J mice and CD1 mice were singly housed. Adult control male 

C57BL/6J mice (n = 6) were housed 2 mice per cage separated by a perforated plexiglass 

divider. To control for the effects of experimental handling, each control mouse was paired with 

a new control mouse every day for 10 days. 

Corticosterone administration (CORT) 

Corticosterone (Sigma Aldrich, St Louis, MO) was dissolved in vehicle (0.45% ß-

cyclodextrin) at a concentration of 35 µg/ml, equivalent to administration of ~5 mg/kg/day per 

mouse (45). C57BL/6J mice (n=5) were group-housed and administered corticosterone in 

their drinking water. Control mice (n=5) were group-housed and received only vehicle. 

Animals were randomly allocated to the two groups. Water bottles were prepared twice a 

week, and the mice never had access to other water. Behavioral testing began on day 56 of 

CORT administration. Experimental and control mice were sacrificed on day 63 following the 

completion of behavioral testing. The duration of administration was 9 consecutive weeks. 

Behavioral tests 

Social Interaction (SI) Test: Social avoidance was measured 24 hrs after the completion 

of the last day of defeat (day 11). During the first trial, experimental mice were allowed to 

explore an open field arena (40 cm × 40 cm × 40 cm) containing an empty wire enclosure for 

2.5 minutes. During the second trial, a CD1 mouse was placed into the wire enclosure, and the 

C57BL/J6 mouse was reintroduced for 2.5 minutes. Time spent in the SI zone and time spent in 

the corner zones during the first and second trial were recorded. SI ratios were calculated as 
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time spent in the SI zone during the second trial divided by time spent in the interaction zone 

during the first trial (23). Mice with SI ratios of  <1 were considered “susceptible” (n = 6), while 

mice with SI ratios >1 were considered “resilient” (n = 7) (73). Corner zone ratios were 

calculated as time spent in the corner zones during the second trial divided by time spent in the 

corner zones during the first trial.  

Open Field Test (OFT)- both groups: OFT were run 24 hrs after the SI tests for CSDS 

mice, and on day 56 of CORT administration. Each mouse was placed in an open field arena 

(40 cm × 40 cm × 40 cm) for 10 minutes. A camera on a tripod stand was set up above the 

arena to record the activity, and the video was later analyzed using Ethovision XT (Noldus). 

The percent of time spent in the center of the open field (20 cm x 20 cm) and the percent 

distance traveled in the center of the open field were analyzed.  

Elevated Plus Maze (EPM): EPM tests were done the day after the OFT for CORT 

mice (day 57 of treatment). Each mouse was placed in an elevated plus maze for 10 minutes. 

A camera on a tripod stand was set up above the arena to record the activity, and the video 

was later analyzed using Ethovision XT (Noldus). The percent of time spent in the open arms 

was analyzed.  

Novelty Suppressed Feeding (NSF): NSF was performed after EPM for CORT mice 

(day 59 of treatment), and as previously described (74). Briefly, NSF testing apparatus 

consisted of a plastic box (50 x 50 x 20 cm) with 2 cm of wood chip bedding. The center of the 

arena was brightly lit (1200 lux). Mice were food restricted for 15 h during the dark phase prior 

to testing. At the time of testing, a single pellet of food (regular chow) was placed on a white 

paper platform positioned in the center of the box. Each animal was placed in a corner of the 

box, and a stopwatch was immediately started. The latency of the mice to begin eating was 

recorded during a 10-min test. Immediately after mice took a bite from the food pellet, the pellet 

was removed from the arena. Mice were then placed back in their home cage and latency to eat 
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and the amount of food consumed in 5 min were measured (home cage consumption). NSF 

latency was capped at 10 min, with animals that did not consume any portion of the pellet 

receiving a score of 600 sec. 

Behavioral Z-Scores: Social avoidance scores were determined by averaging the z 

scores for 4 measures as previously described (23); SI ratio, corner ratio, time spent in SI zone, 

and time spent in corner zones. The z scores for SI ratio and time spent in SI zone were 

multiplied by -1, so that higher scores across all 4 measures indicated higher avoidance. 

Similarly, the OFT score was determined by averaging the z scores for the 2 measures. The z 

scores were multiplied by -1, so that higher OFT score indicate higher avoidance of the brightly 

lit center of the OF. EPM scores were also multiplied by -1, so that higher EPM scores indicate 

higher avoidance of the open arms of the EPM. High NSF scores already indicate higher 

avoidance, so they were not inverted. Therefore, across all 4 tests, higher scores indicate higher 

anxiety-like/avoidant behavior.  

 

Tissue Collection  

Animals were sacrificed by rapid decapitation to maintain mitochondrial integrity in brain 

tissue. Brains were rapidly flash frozen in ice-cold isopentane, stored at -80°C, and later 

transferred to -170°C (liquid nitrogen vapor) until mitochondrial measures were performed. 

Brains were transferred back to -80°C during the week prior to being sectioned and were then 

transferred to -30°C the night before sectioning. Brains were sectioned coronally on a Leica 

Model CM3050 S cryostat. The cryostat internal temperature and blade temperature were set to 

-22°C during sectioning. Brains were mounted onto a specimen disk using optimal cutting 

temperature (OCT) compound. The brain was sectioned coronally, alternating between two 

200μm thick slices and then two 20μm, and were deposited onto microscope slides. Brain 

sections were kept at -80°C until brain region-specific tissue sample collection. One of the 
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recovered CDSD mouse brain contained blood and could not be reliably sectioned, so this 

animal was excluded from analysis. A second CSDS mouse brain and a control brain both 

cracked during slicing, so some of the brain regions (n= 7 for CSDS mouse, n=8 for control) 

could not be obtained from those brains, but the regions that were obtained were included in 

analysis.  

Tissue biopsy punches on frozen brain sections: The scalable Allen Mouse Brain 

volumetric atlas 2012 (75) was used to determine the location of each brain region of interest, 

and their distance from bregma. The atlas’ Nissl-stained images were used as a reference for 

estimating each section’s distance from bregma, which determined which brain slices would be 

used for punch biopsy collection of each region of interest (Figure S2B). Brain slices were 

punched using 1.00mm diameter Robbins True-Cut Disposable Biopsy. Two bilateral punches 

were collected for each brain region over dry ice. For brain regions in the midline, punches were 

taken from two consecutive slices. All tissue punch locations were approximated by using 

landmarks on the slice and by comparing to the atlas. It is important to note that the 1mm 

puncher was larger than the actual brain region in some instances, and so parts of neighboring 

brain regions may have been included in the punches. Therefore, the punching technique may 

include some error. Punches were stored at -80°C until they were ready to be used for 

enzymatic activity assays.  

The tissue punches were too light to be accurately weighed, so we had to estimate the 

weight based on the reported mouse brain density of 1.04g/cm3(76). The punches were 0.5mm 

(diameter) by 200μm (height), so using the equations � � ��� � � and d=m/v we obtain an 

estimated mass of 0.1633mg per punch, thus 2 punches were approximated to weigh 

0.3266mg.   

Mitochondrial Measurements  
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Tissue Preparation: The punches from each brain region were homogenized in 0.2ml of 

homogenization buffer (1mM EDTA and 50mM Triethanolamine) (2x 1mm tissue punch/ 0.2mL 

of homogenization buffer), with 2 tungsten beads to disrupt the tissues’ cells and release the 

mitochondria. Tissues were homogenized using a Tissue Lyser (Qiagen cat# 85300), which was 

run at 30 cycles/sec for 1 minute. The tissues were then incubated in ice for 5 minutes, and 

were then re-homogenized for 1 minute. Tissues were vortexed to ensure homogeneity. 

Peripheral tissues were cut over dry ice, weighed, and were then homogenized 1:180 

(weight:volume, mg: μl), except for heart samples that were further diluted to 1:720 to be in the 

dynamic range of the assays. 

Enzymatic activities 

Enzymatic activities were quantified spectrophotometrically for Citrate Synthase (CS), 

Complex I, Succinate Dehydrogenase (SDH, complex II), Cytochrome C Oxidase (COX, 

complex IV) and and were expressed per mg of tissue, as described previously with some 

modifications (21). All miniaturized assay measurements were performed in 96-well plates and 

enzymatic activity assays recorded on a Spectramax M2 (Spectramax Pro 6, Molecular 

Devices). Linear slopes reflecting changes in absorbance of the reporter dye were exported to 

Microsoft excel and converted into enzymatic activities using the molar extinction coefficient and 

dilution factor for each assay. The assays were optimized to determine the minimal amount of 

tissue required to obtain reliable results assessed by the C.V. between duplicates. The assays 

were then further optimized to determine the minimal amount of brain tissue homogenate 

required for each individual assay. Assay validation involved regressing increasing tissue 

amounts (number of punches) with observed activities, which confirmed that an increase or 

decrease in tissue used produced proportional changes in total activity. 

Samples were run in duplicates for each enzyme, along with a nonspecific activity 

control, and every plate had a positive control (heart homogenate). The 96-well plates were 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.02.446767doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446767
http://creativecommons.org/licenses/by/4.0/


 26

designed so that each brain region/tissue from all animals were run on a single plate, which 

prevents potential batch variation for comparisons between the animals. However, due to the 

size of the plates, no more than 2 types of tissues could be run together on a single plate. This 

limits the accuracy of the comparisons of enzymatic activities between tissues, but maximizes 

the accuracy of comparisons between animals for each tissue. Reference positive controls on 

each plate were used to control for potential batches/plates effects. None of the enzymatic 

activities of some samples (n=8 out of 579, resulting in n=571) could not be measured for 

technical reasons and are therefore not included in the analyses. 

Citrate synthase (CS) enzymatic activity was determined by measuring the increase in 

absorbance of DTNB at 412nm at -30°C in 200uL of a reaction buffer (200 mM Tris, pH 7.4) 

containing acetyl-CoA 10 mM, 10 mM 5,5’- dithiobis- (2-nitrobenzoic acid) (DTNB), 2 mM 

oxaloacetic acid, and 10% w/v Triton-x-100. The rate of conversion of DTNB into NTB2- ions 

indicates the enzymatic activity and is used as a marker of mitochondrial content. Oxaloacetate 

is removed from the assay mix as a way to measure non-specific activity. The final CS activity 

was determined by integrating OD412 change over 150-400 seconds and then subtracting the 

non-specific activity. 10μL of homogenate was used to measure CS activity.  

Complex I (CI) activity was determined by measuring the decrease in absorbance of 

DCIP. The rate of absorbance of DCIP is measured at 600nm at 30°C, in 200μL of a reaction 

buffer (potassium phosphate 100mM, pH 7.4) containing 550mg/ml bovine serum albumin 

(BSA), 50mM potassium cyanide (KCN), 20 mM decylubiquinone, and 0.4mM antimycin A. 

10μL of homogenate was used to measure CI activity. Antimycin A and KCN are used to inhibit 

electron flow through complexes III and IV. The negative control condition includes rotenone 

(200mm) and piericidin A (0.2mM), which inhibit CI activity. The final CI activity was determined 

by integrating OD600 change over 150-500 seconds, and by subtracting the rate of NADH 

oxidation in the presence of rotenone and piericidin A from the total decrease in absorbance.  
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SDH (CII) activity was determined by measuring the decrease in absorbance of DCIP. 

The rate of absorbance of DCIP was measured at 600nm at 30°C, in 200μL of a reaction buffer 

(potassium phosphate 100mM, pH 7.4) containing 50mg/ml bovine serum albumin (BSA), 

500μM rotenone, 500mM succinate-tris, 50mM potassium cyanide (KCN), 20 mM 

decylubiquinone, 20mM DCIP, 50mM ATP, 0.4mM antimycin A. 15μL of homogenate was used 

to measure CII activity. The negative control condition includes sodium-malonate, which inhibits 

CII. The final CII activity was determined integrating OD600 change over 300-800 seconds, and 

by subtracting the absorbance in the presence of malonate (500mM) from the total decrease in 

absorbance.  

Cytochrome C Oxidase (COX/CIV) activity was determined by measuring the decrease 

in absorbance of cytochrome c. The rate of conversion of cytochrome c from a reduced to 

oxidized state was measured at 550nm at 30°C, in 200μL of reaction buffer (100mM potassium 

phosphate, pH 7.5) containing 10% w/v n-dodecylmaltoside and 120μM of purified reduced 

cytochrome c. 6uL of homogenate was used to measure COX activity. The negative control 

condition omits tissue homogenate determine the auto-oxidation of reduced cytochrome c. The 

final CIV activity was determined by integrating OD550 change over150-500 seconds, and by 

subtracting the non-specific activity from the total decrease in absorbance.  

Mitochondrial enzymatic activities were determined by averaging the duplicates. The 

technical variation of the duplicates was measured with and a 10% cutoff. The specific activity of 

each sample was calculated as the total activity minus non-specific activity (negative control), 

times the normalization factor. Plates were normalized by their positive controls. Because of 

some variation in positive controls, each plate’s positive control was z-scored to the average of 

the positive control activity per assay. All of the activities on the plate were then multiplied by 

their normalization factor which is determined by 1/z-scored positive control. 

Mitochondrial DNA quantification 
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mtDNA density and mtDNA copy number (mtDNAcn) were measured as previously 

described (77), with minor modifications. The homogenate used for the enzymatic activity 

measures was lysed at a 1:10 dilution in lysis buffer (100 mM Tris HCl pH 8.5, 0.5% Tween 20, 

and 200 g/ml proteinase K) for 10 hours at 55°C, 10 minutes at 95°C, and were kept at 4°C until 

used for qPCR. qPCR reactions were measured in triplicates in 384 well qPCR plates using a 

liquid handling station (ep-Motion5073, Eppendorf), with 12uL of master mix (TaqMan Universal 

Master mix fast, Life Technologies #4444964) and 8uL of lysate. Each plate contained triplicates 

of a positive control (heart) and of a negative control (lysate without homogenate). qPCR 

reaction with Taqman chemistry was used to simultaneously quantify mitochondrial and nuclear 

amplicons in the same reactions: Cytochrome c oxidase subunit 1 (COX1, mtDNA) and β-2 

microglobulin (B2M, nDNA). The Master Mix included 300 nM of primers and 100 nM probe: 

COX1-Fwd: ACCACCATCATTTCTCCTTCTC, COX1-Rev: CTCCTGCATGGGCTAGATTT, 

COX1-Probe: HEX/AAGCAGGAG/ZEN/CAGGAACAGGATGAA/3IABkFQ. mB2M-Fwd: 

GAGAATGGGAAGCCGAACATA, mB2M-Rev: CCGTTCTTCAGCATTTGGATTT, B2M-Probe: 

FAM/CGTAACACA/ZEN/GTTCCACCCGCCTC/3IABkFQ.  

The plate was quickly centrifuged and cycled in a QuantStudio 7 flex instrument (Applied 

Biosystems Cat# 448570) at 50°C for 2 min, 95°C for 20 sec, 95°C for 1 min, 60°C for 20 sec 

for 40x cycles. To ensure comparable Ct values across plates and assays, thresholds for 

fluorescence detection for both mitochondrial and nuclear amplicons were set to 0.08. 

Triplicates for each sample were averaged for mtDNA and nDNA, and an exclusion cutoff of Cts 

>33 was applied. For samples with triplicates C.V.s > 0.02, the triplicates were checked, and 

outlier values removed where appropriate, and the remaining duplicates were used. The final 

cutoff was C.V. > 0.1 (10%); and any samples with a C.V. > 0.1 were discarded. The mtDNAcn 

was derived from the ΔCt calculated by subtracting the average mtDNA Ct from the average 
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nDNA Ct. mtDNAcn was calculated by 2(ΔCt) x 2. For measures of mtDNA density, the Ct value 

was linearized as 2Ct / (1/10-12) to derive relative mtDNA abundance per unit of tissue.  

In tissues of similar cellular density (number of cell nuclei per area or mass of tissue), 

mtDNAcn (mtDNA:nDNA) provides an accurate reflection of mtDNA genome density per cell. 

However, different brain regions vary widely in their cellularity (up tp 8.5-fold), mostly because 

some defined areas such as the granular layer of the cerebellum are populated with numerous 

small cell bodies, whereas other regions such as the molecular layer of the DG are completely 

acellular and devoid of cell bodies/nuclei. Nevertheless, acellular tissue compartments filled with 

dentrites can be rich in mitochondria and mtDNA, and therefore the number of mtDNA copies 

per unit of tissue (μm3 or mg of tissue) is a more generalizable and accurate estimate of mtDNA 

density between brain regions. 

Mitochondrial Health Index 

The mitochondrial health index (MHI) integrates the 5 primary mitochondrial features, 

yielding an overall score of mitochondrial respiratory chain activity on a per mitochondrion basis 

(21). The simple equation uses the activities of Complexes I, II, and IV as a numerator, divided 

by two indirect markers of mitochondrial content, citrate synthase activity and mtDNA density: 

MHI = (CI+CII+CIV) / (CS+mtDNA density+1) * 100. A value of 1 is added as a third factor on 

the denominator to balance the equation. Values for each of the 5 features are mean centered 

(value of an animal relative to all other animals) such than an animal with average activity for all 

features will have an MHI of 100 [(1+1+1) / (1+1+1) * 100 = 100].   

Immunohistochemical staining 

Immunofluorescent staining was used to quantify local Succinate dehydrogenase 

complex, subunit A (SDHA) expression in the cerebellum. Slides with 200μm coronal sections 

bearing the cerebellum were taken from storage at -80oC and allowed to warm up to room 
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temperature for one hour. The sections were then fixed in freshly prepared 4 % PFA for 5 

minutes and immediately washed twice in a 0.1% PBS-Tween 20 (PBS-Tw) solution. They then 

underwent dehydration through iced cold 70% methanol for 10 min, 95% methanol for 10min, 

100% methanol for 20min, 95% methanol for 10min and 70% methanol for 10 min followed by 

two washes in PBS-Tw. In a PBS-Tw bath, sections were carefully unmounted from the slides 

using a razor blade and artist’s paintbrush. One section containing an appropriate cerebellum 

region was selected from each animal and individually placed in 10% Normal Donkey Serum 

(NDS) overnight at 4 oC. They were then incubated in a 1:100 dilution of Rabbit anti-SDHA 1o 

antibody in PBS overnight at 4 oC on a gentle shaker. The following day, they were washed 

repeatedly in PBS-Tw. Sections were then incubated in a 1:500 dilution of donkey anti-Rabbit 2o 

conjugated with AlexaFluor 546 in NDS for two hours in a dark box at room temperature. They 

were then washed in PBS, incubated in 0.625 µg/mL 4′,6-diamidino-2-phenylindole (DAPI) and 

washed once more. Finally, sections were mounted on Superfrost slides with Prolong Diamond 

mounting media and a No. 1.5 coverslip. 

Confocal imaging 

The immunofluorescent staining was imaged on a Leica SP8 confocal microscope 

equipped with Lightning super resolution software. The regions of interest were located using a 

Leica 20x 0.75 NA objective to determine areas of suitable staining surrounding the purkinje cell 

layer in the cerebellum. High-resolution images of the area were taken with a Leica 63x 1.40 NA 

oil objective. For highest resolution, the images were formatted at 2496 x 2496 pixels, with a 

zoom of 2.50x, line average of 8, pinhole size of 0.50 AU. The final pixel size was 29.58nm x 

29.58nm and a z-stack with a step size 0.15μm was taken through the stained area. A 405nm 

laser was used for exciting the DAPI channel with a power of 8.0% and gain of 60%. A 561nm 

laser was used for the AlexaFluor 546 channel with a power of 4.0% and a gain of 20%.  

SDHA staining analysis 
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Final images were deconvolved in the Lightning software using the default settings. 

Images were analyzed in ImageJ version 1.52p. Fifty consecutive slices from each stack were 

selected for a section thickness of 7.5μm, which roughly covered the depth of penetration of the 

antibodies. The 16bit images were first thresholded using the Triangle algorithm within the 

integrated Auto-thresholding plugin to create a binary image. The particle analyzer was then 

used to quantify the percent of the area stained for each slice. The percent area stained from 

each slice was summated to calculate the percent of volume stained. For compartmentalized 

data, the molecular and granular layers were separated using a rectangular selection of 

approximately 50px width through each stack. For the purkinje layer, a rectangle was drawn that 

narrowly captured the stained area of each slice. The volumetric staining for each region of 

interest was calculated from the percent of area stained quantified using the particle analyzer.      

TDA-based mapper analysis 

After creating a delta of mitochondrial features between stressed (CORT or CSDS) and 

control mice, the data matrix for each group was process through the TDA-based Mapper 

pipeline (49). The input data matrix contained 102 concatenated rows for brain regions (17 brain 

regions x 6 mitochondrial features) and 5 or 6 columns for individual mice, based on the number 

of animals per group. Missing values, if any, in the input data matrix were interpolated within 

group using a linear interpolation. The TDA-based Mapper analysis pipeline consists of four 

steps. First, Mapper involves embedding the high-dimensional input data into a lower dimension 

�, using a filter function �. For ease of visualization, we chose � � 2. The choice of filter 

function dictates what properties of the data are to be preserved in the lower dimensional space. 

For example, linear filter functions like classical principal component analysis (PCA) could be 

used to preserve the global variance of the data points in the high dimensional space. However, 

a large number of studies using animal models and computational research suggest that inter-

regional interactions in the brain are multivariate and nonlinear (78-80). Thus, to better capture 
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the intrinsic geometry of the data, a nonlinear filter function based on neighborhood embedding 

was used (49). The second step of Mapper performs overlapping n-dimensional binning to allow 

for compression and reducing the effect of noisy data points. Here, we divided the data into 

lower dimensional space into 64 bins with 70% overlap. Similar results were observed for 

different number of bins (e.g., 49, and 81). Third, partial clustering within each bin is performed, 

where the original high dimensional information is used for coalescing (or separating) data 

points into nodes in the low-dimensional space. Partial clustering allows to recover the loss of 

information incurred due to dimensional reduction in step one (81). Lastly, to generate a 

graphical representation of the shape of the data, nodes from different bins are connected if any 

data points are shared between them.  

The Mapper-generated graphs can be annotated (or colored) using meta-information 

that was not used to construct the graphs. Here, we annotated these graphs using region-labels 

to examine whether mitochondrial features were similarity expressed across all regions or 

whether regional specificity was observed across the two groups. To quantify the extent of 

segregation (high regional specificity) or integration (low regional specificity) across the six 

mitochondrial features, we used a graph theoretical measurement of participation coefficient 

(51). Participation coefficient 
� of a node � is defined as: 


� � 1  � ������ ��
��

���

 

where ��� is the number of links of node � to nodes in community �, ��is the total degree 

of node � and ��is the number of communities. The 
� of a node � is close to 1 if its links are 

uniformly distributed among all communities of the graph (and hence integrated) and it is close 

to 0 if its links are mostly within its own community (and hence segregated).   

Multi-slice community detection 
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One of the most commonly studied mesoscale aspect of a graph is modularity, where 

highly modular graphs consist of cohesive groups of nodes (or communities) that are more 

strongly connected to each other than they are to the rest of the network (82). Examination of 

modularity has been recently extended to multi-slice networks that are defined by coupling 

multiple adjacency matrices across time or modality (55). Here, we used six slices, each derived 

from one of the mitochondrial features, where each slice represented weighted adjacency matrix 

of pair-wise Pearson’s correlation between brain regions. We use categorical multi-slice 

community detection algorithm with the presence of all-to-all identity arcs between slices (55). 

The generalized modularity function for multi-slice community detection is given by 

��	
���
�� �  1
2� � ������  �� ������2��

� ��� � ��� ���! �"#�� , #��%
����

 

Where ���� represents weighted adjacencies between nodes � and & for each slice �, with 

interslice couplings  ���that connect node & in slice � to itself in slice �. ��represents resolution 

parameter in each slice; higher value of �� (e.g., > 1) detects smaller modules, while lower 

values (e.g., between 0 and 1) detects bigger modules. In line with previous work, here, we set 

the resolution parameter across slices to be unity, i.e., �� � 1 (83). For simplicity, and as done 

previously, the interslice coupling parameters were also kept same across slices (55). Here, we 

used  ��� � 0.1. Perturbation of interslice coupling values around 0.1 produced similar results.  

 To estimate the stability of identified communities across the six mitochondrial slices, 

under the assumption that stable communities could represent convergence across 

mitochondrial features, we estimated module allegiance matrix (84). The module allegiance 

matrix summarizes the stability of community structure across slices, such that each entry �, & of 

the matrix corresponds to the percentage of slices in which regions � and & belong to the same 

community. Finally, an iterative consensus community detection algorithm was run on the 

module allegiance matrix to define the large-scale networks that are convergent across slices 
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defined by mitochondrial features. The iterative community detection (85) was run multiple times 

(1,000), followed by consensus clustering to get stable results for identifying large-scale 

networks of brain regions (86). 

Comparison of mito-based networks with transcriptomic- and structural connectivity-

based networks 

To compare our mitochondrial communities against other modalities, we examined the 

organization of gene co-expression in the mouse brain as well as mouse structural connectome 

data. We utilized the Allen Brain Atlas’ ISH (in situ hybridization) feature, which maps each gene 

onto a reference standard coordinate atlas image, providing a spatial estimate of transcript 

levels representing gene expression (56). Specifically, we used the Anatomic Gene Expression 

Atlas (AGEA) (https://mouse.brain-map.org/agea), which is a a three-dimensional male adult 

C57BL/6J mouse brain atlas based on the ISH gene expression images. The AGEA feature 

allows for selecting both a ‘seed voxel’ and a target ‘selected voxel’ from exact brain 

coordinates coordinates, yielding the transcriptome-wide correlation between the seed and 

target regions. The correlation is a measure of the average co-expression between the two 

voxels. The co-expression values were obtained for all possible pair of brain regions (17x17 

matrix), yielding a gene co-expression correlation matrix to which the structure of our mito-

based networks could be compared using a permutation text.  

The structural connectome data was obtained from The Allen Mouse Brain Connectivity 

Atlas (57), which is a mesoscale connectome of the adult mouse brain. We utilized the 

normalized projection strength values for the all brain regions of interest. Because this atlas 

does not distinguish between dorsal and ventral dentate gyrus, data was obtained for 16 brain 

regions. For three brain regions where the Atlas provides connectivity values for multiple 

subregions (OFC, VN, Cerebellum), the connectivity values were averaged across the 
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subregions to yield a global measure for each region, thus matching the dimensionality of our 

mitochondrial dataset.  

Statistical analysis 

Standardized effect sizes (Hedge’s g) were computed to quantify the effect of stress 

conditions on mitochondrial features. Significant effect sizes were determined by the 95% 

confidence intervals. Two-way ANOVAs were used to compare the effects of the two stressors 

on the mitochondrial measures across all tissues, and to compare the average mitochondrial-

behavior correlations between brain regions and tissues for all behaviors. A binomial test was 

used to determine if the proportion of brain regions exhibiting an increase or decrease in 

mitochondrial features differed from chance level (50%). Correlations between behavioral Z-

scores and mitochondrial activities were estimated using Spearman’s r (r) to guard against 

inflation. Frequency distributions of the effect sizes for the two stressors and of the 

mitochondrial-behavior correlations were fitted with Gaussian curves and analyzed by one 

sample t tests compared to the null distribution. Correlations between tissues’ mitochondrial 

activities were measured as Pearson’s r. A survival curve using Mantel-Cox log-rank test was 

generated for novelty suppressed feeding test latencies because the test is capped at 600 sec. 

Hierarchical clustering was performed on the data using Euclidian distance with Ward’s 

clustering algorithm. Statistical analyses were performed with Prism 9 (GraphPad) and 

Metaboanalyst version 4 (87).  
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Figure legends 

Figure 1. Behavioral and neuroendocrine stressors enhance the diversity of 
mitochondrial phenotypes across brain regions. (A) Effect of CORT and CSDS on 
mitochondrial features across brain regions and peripheral tissues relative to controls. Effect 
sizes are quantified as Hedge’s g, with significant effect sizes (95% confidence interval) labeled 
with the fold difference. P value from 2-way ANOVA. (B) Pairwise comparisons between brain 
regions from (A), colored by p-value (-log10). (C) Gaussian fit for the frequency distribution of 
the effect sizes in A on all 6 mitochondrial features in all 17 brain regions (n=102 pairs); one-
sample t test against null hypothesis g=0. (D) Number of brain regions in which mitochondrial 
features are either higher or lower in CORT and CSDS mice relative to controls; *P<0.05, 
***P<0.001 from a binomial test. (E) Exemplar representations of Mapper input and output. The 
pie-chart based annotation of graph nodes allowed us to examine the degree of co-regulation of 
mito-features across brain regions. (F) Topological data analysis (TDA) based Mapper approach 
to determine if brain regions were co-regulated in their stress-induced mitochondrial 
recalibrations for the two groups. (G) Graph-theoretical measure of participation coefficient, 
measuring the degree of segregation/integration among brain regions in each graph, indicating 
that CORT-induced mitochondrial recalibrations were more region-specific (or segregated) 
whereas CSDS caused a more integrated response.   

Figure 2. Association patterns for brain-wide mitochondrial function and mouse 
behavior. (A) Mitochondrial phenotyping and behavioral profiling of inter-individual variation in a 
heterogenous population of mice; OFT, open field test; EPM, elevated plus maze; NSF, novelty 
suppressed feeding; SI, social interaction test. (B) Gaussian fits of the frequency distributions 
for all correlations (n=102) between the composite mitochondrial health index (MHI) and each 
behavioral test; one sample t test against null hypothesis r=0 (other mitochondrial features are 
shown in Extended Data Fig. 8). (C) Individual correlations for the 17 brain region, across the 6 
mitochondrial features, for each behavioral score (see Extended Data Figure 9 for additional 
details) quantified as Spearman’s r. The strongest correlations for each behavioral test are 
plotted below. An adjusted p-value of <0.002 was applied (false-discovery rate 1%). All tests 
have been adjusted so that a higher score indicates higher anxiety-like behavior (see Methods 
for details). (D) Average correlation of each behavior for the brain (B) and tissue (T) 
mitochondrial features; 2-way ANOVA. 

Figure 3. Mitochondrial function-based connectivity across anatomical brain regions. (A) 
Connectivity matrix of mitochondrial features across brain regions, using all 6 mitochondrial 
features across the animal cohort (n=27). The matrix is ordered by hierarchical clustering 
(Euclidian distance, Ward’s clustering). (B) Cross-correlation of each mitochondrial feature to 
the other 5 measures within each brain region (n=17 brain regions). (C) Global connectivity 
based on the average correlation for each brain region with all other regions. (D) Average 
correlation of mitochondrial features between brain region’s (B), peripheral tissues (T), and 
between brain regions and tissues (B-T); p<0.0001, Ordinary one-way ANOVA with multiple 
comparisons. (E) Multi-slice community detection analysis on mitochondrial measures across 
the 17 brain regions, with mitochondrial features represented in six separate layers, resulting in 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.02.446767doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446767
http://creativecommons.org/licenses/by/4.0/


 45

(F) three distinct communities or brain networks. Modular structure confirmed by permutation 
test, p<0.0001). (G) Average mito-behavior correlation by module for each behavioral test (top). 
The bottom panel shows networks with each region color-coded by its average correlation with 
behaviors; for OFT and EPM (left) and SI (right). Modularity metrics anchored in whole-brain 
transcriptome and the structural connectome data are shown in Extended Data Fig. 10. 

Table 1. Expanded abbreviations and Bregma coordinates. All regions were taken bilaterally 
except those marked with *, which were obtained by collecting tissue from two consecutive 
slices 
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Abbreviation Region name Bregma / Anatomical location

mOFC Medial orbitofrontal cortex 2.42

mPFC Medial prefrontal cortex 1.22

CPu Caudoputamen 1.22

NAc Nucleus accumbens 1.22

M1 Primary motor cortex 1.22

Hypoth Hypothalamus -0.48*

Thal Thalamus -0.68*

DGd Dorsal dentate gyrus -1.78

Amyg Amygdala -1.78

CA3 CA3 region -2.58

VTA Ventral tegmental area -2.58

V1 Primary visual cortex -2.58

SN Substantia nigra -3.08

DGv Ventral dentate gyrus -3.38

PAG Periaqueductal grey -3.78*

Cereb Cerebellum -6.38

VN Vestibular nuclei -6.38

AG Adrenal glands Both glands pooled

Liver Liver Inferior portion of left lobe

Heart Heart Inner wall of left ventricle

Soleus Red oxidative skeletal muscle Tendon-to-tendon, right leg

WG White glycolytic skeletal muscle Superficial medial head, right leg
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