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Abstract

Background: Ibogaine was recently found to result in significant functional improvements in
treating the sequelae of traumatic brain injury (TBI) among Special Operations Forces veterans
(SOVs). In the present article, we use multimodal neuroimaging to elucidate the neural correlates
of ibogaine in 30 male SOVs who received ibogaine treatment.

Methods: Arterial spin labeling and blood oxygen level-dependent functional magnetic resonance
imaging data were collected before, immediately after ibogaine treatment, and at 1-month follow-
up. A whole-brain exploratory analysis was conducted to examine the effects of ibogaine on
resting-state regional cerebral blood flow (rCBF) and functional connectivity.

Results: The results revealed gradual increases in rCBF in the cortical, limbic, and striatal
subregions, and changes in functional connectivity across a wide range of functional networks.
The magnitude of treatment-induced rCBF changes in the left insula and left anterior cingulate
cortex correlated significantly with improvements in TBI-related disability symptoms.

Conclusion: Our results suggest that ibogaine may involve widespread reorganization of functional
connections in the brain, and that persisting regional changes in metabolic activity after ibogaine
treatment, particularly within paralimbic brain regions, might be related to the observed
therapeutic effects of ibogaine. Our findings serve to generate future hypotheses for larger,
controlled neuroimaging studies of ibogaine in humans, necessary to validate these initial findings.



Introduction

Traumatic brain injury (TBI) is a major public health concern, with chronic effects ranging from
a reduced ability to perform daily tasks to various emotional and cognitive impairments (1), such
as post-traumatic stress disorder (PTSD), major depressive disorder, and generalized anxiety
disorder (2-5). Special Operations Forces veterans (SOVs) have one of the highest rates of TBI
and PTSD, both of which greatly increase the risk of suicide (6). Compared to civilians, combat
veterans from the Iragq and Afghanistan conflicts exhibit a much higher prevalence of TBI (9-28%)
and PTSD (lifetime prevalence 29%) (7). TBI can occur from a sudden blow to the head, blasts,
or blunt force falls (4). Currently, the standard of care for TBI includes rehabilitation therapy, talk
therapy, and medication, which focus on symptom management rather than remission, and have
limited efficacy for many veterans (8). Improved treatment strategies for the sequelae of TBI are
urgently needed.

Ibogaine is a naturally occurring psychoactive compound derived from the root bark of the
Tabernanthe iboga plant found in Gabon, Central Africa. Ibogaine has traditionally been used by
the Bwiti tribe in spiritual ceremonies (9). In the Western world, it has been explored as a potential
treatment for addiction (10), as well as various other neurological and psychiatric disorders (11).
Ibogaine research in humans has been limited due to legal restrictions, abuse potential, and safety
concerns associated with increased cardiovascular risk (12). Coadministration of ibogaine with a
cardioprotective agent like magnesium (13), however, may mitigate this risk. We conducted the
first-of-its-kind proof-of-principle observational study of the Magnesium-lbogaine: Stanford
Traumatic Injury to the Central Nervous System (MISTIC) protocol in special operations veterans
(SOVs) with chronic disability and psychiatric symptoms following TBI. Participants experienced
remarkable and sustained clinical improvements (14,15) after treatment with MISTIC. The neural
mechanisms of action of MISTIC, however, are not yet clear.

Ibogaine is rapidly converted into an active metabolite (16), noribogaine, which is eliminated more
slowly than ibogaine, allowing the prolonged release of small proteins called neurotrophic or
growth factors (17-19) that can promote neuroplasticity (20). Neuroplasticity is often paralleled
by brain-wide metabolic changes that can be captured via functional magnetic resonance imaging
(FMRI) methods. Previous fMRI studies have shown that TBI is associated with long-term changes
in blood perfusion, such as reduced blood flow (21,22). These changes often precede observable
structural abnormalities in neurodegenerative diseases, making blood perfusion a sensitive marker
of cerebrovascular dysfunction seen in TBI (23,24). Normal neuronal cell activity and brain
function require an increased flow of oxygenated blood (via neurovascular coupling) in response
to increased metabolic demand at activated regions (25). Two predominant methods to capture
neurovascular coupling are arterial spin labeling (ASL) and blood-oxygen-level-dependent
(BOLD) neuroimaging techniques. Both BOLD and ASL fMRI methods have been used to
examine changes in brain activity in response to psychedelic and psychotropic compounds (26,27),
as well as in psychiatric populations (28,29). A summary of the first neuroimaging studies of
common serotonergic psychoactive compounds can be found in the Supplementary Table S1. To
the best of our knowledge, however, no previous fMRI studies have investigated the neuroplastic
effects of ibogaine on brain metabolic activity and functional connectivity in humans.

Here, we implement a multimodal approach using ASL and BOLD fMRI to elucidate the neural
mechanisms of action of MISTIC treatment and its associated therapeutic benefits in SOVs. In
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particular, this pilot study used ASL to examine regional cerebral blood flow (rCBF) changes and
BOLD fMRI to examine resting-state functional connectivity (rsFC) changes immediately and one
month after MISTIC treatment.

Methods

Inclusion and ethics

The research procedures of this study were approved by the Stanford University Institutional
Review Board (IRB). Informed written consent was obtained from all participants, and the process
was compliant with all relevant ethical regulations (15). Roles and responsibilities were agreed
upon among authors and collaborators. The trial was preregistered at ClinicalTrials.gov
(NCT04313712) and osf.io (https://osf.io/24trc/).

Participants

Thirty SOVs who had voluntarily enrolled in an ibogaine treatment at a clinic in Mexico were
enrolled in the original observational pilot clinical study (15). Of our final sample of 27 that
completed neuroimaging, 26 SOV males were included in imaging analyses based on data quality
(image distortion), all with mild to moderate TBI and most meeting diagnostic criteria for PTSD
(Figure 1). Two of the 27 participants were unable to report the exact number of TBIs due to a
large number of blast exposures. Hence, this value was imputed from the original cohort's (N =
30) mean and standard deviation (SD) as Mean + 5 x SD. Further participant demographics can be
found in Supplementary Table S2 and previously published work from this study (15).

Figure 1. Study Design and data collection at three time points

Study Design: Following enrollment, participants undertook initial baseline evaluations over a
secure video platform with a clinical neuropsychologist (two months to one week before in-person
assessments), including a review of medical and psychiatric history, history of combat exposures,
history of TBI and blast exposure, and a psychodiagnostics interview. Imaging data were acquired
and analyzed at baseline, immediately post-treatment, and one month after treatment (Figure 1).
All participants presented with a history of TBI, according to the Ohio State University Screening
for TBI exposure (30) and the Department of Defense TBI classification (31). In addition, the
Boston Assessment of TBI-Lifetime was administered to quantify blast exposure (32). For further
details of these methods, refer to Cherian et al. (15).

Treatment: The MISTIC treatment involved the administration of oral ibogaine (mean + s.d. total
dose =12.1+ 1.2 mg kg 1) with intravenous magnesium sulfate (15). Participants were evaluated
medically and received coaching from a licensed therapist about the ibogaine experience prior to
treatment. No psychotherapy was delivered during treatment. The effects of ibogaine may last 24—
72 hours or longer (33), and participants underwent continued monitoring for 72 hours after
dosing.

MRI Acquisition: All participants were screened for MRI safety before scanning procedures.
Scans were acquired using a 3 Tesla GE Discovery MR750 scanner with a 32-channel head-neck
imaging coil at the Center for Cognitive and Neurobiological Imaging at Stanford University.
Whole-brain structural images were collected using GE’s BRAVO sequence (3D, T1-weighted,
FOV = 256x256mm; matrix = 256 x 256 voxel; TR = 6.39ms, TE = 2.62ms, slice thickness =
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0.9mm, flip angle = 12°). One whole-brain dual BOLD-ASL scan was acquired during all three
time points. The ASL component was a 6-minute HyperMEPI Pseudo-continuous ASL (pcASL)
image (2D, FOV = 80x80mm, matrix = 80x80 voxel, TE = 11.3ms, TR = 3.1s, slice thickness =
3mm, flip angle = 60°, Imaging frequency = 127.8, Multiband Acceleration Factor = 4). Two
whole-brain 8-minute resting state scans were acquired consecutively (TR = 1300ms, TE = 30ms,
flip angle=60°, slice multiband acceleration factor = 6, FOV = 230x230mm, matrix = 128 x 128
voxel). All participants were instructed to keep their heads still and eyes open during the scan.
During the resting state task, they were asked to let their minds wander freely and avoid repetitive
thoughts while attending to a white fixation cross on a black screen. Memory foam and inflatable
padding were used to restrict head motion. Additionally, participants' alertness was monitored
using in-scanner video cameras.

Preprocessing:

ASL: The pcASL data were preprocessed on ASLtbx (34) and implemented in MATLAB (R2021b
9.11.0). PCASL images were reoriented, aligned, and coregistered to the anatomical T1w image.
Next, six motion parameters (X, y, z translations, and 3 rotations), spin labeling, and control
labeling time paradigm (the zigzag pattern) were all regressed from the motion time courses. This
was followed by temporal Butterworth high-pass filtering (0.04-1 Hz), spatial smoothing, and
normalization to standard MNI space. The outputs were then Z-scored and skull-stripped using a
whole-brain mask from the FMRIB software library (FSLv5.0).

BOLD: All data were preprocessed using fMRIPrep 20.2.6 (35,36), based on Nipype 1.7.0 (37,38).
Anatomical data, T1-weighted (T1w) images, were corrected for intensity non-uniformity, skull-
stripped, and brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM), and gray
matter (GM) was performed on the brain-extracted T1w volume-based spatial normalization to
standard spaces (MNI152NLin2009cAsym) was performed through nonlinear registration. The
preprocessing steps were performed on both BOLD resting-state runs for each subject. First, a
reference volume and its skull-stripped version were generated using a custom methodology of
fMRIPrep. This was followed by an in-house pipeline applied, where all data were spatially
smoothed (6-mm-full-width, half-maximal Gaussian kernel), nuisance variables from non-brain
tissue signals (CSF, WM), global signal, and 24 motion parameters were regressed from the data,
and a temporal bandpass filter (0.01-0.1 Hz) was applied.

Analyses: All analyses mentioned regressed effects of age, combat exposure scale (CES), and
number of TBIs. Due to the novelty of this study, the results serve to generate hypotheses for
similar future studies.

ASL: To investigate changes in rCBF, a one-way repeated-measures ANOVA, using a flexible
factorial model across all three time points, was designed on SPM12 for 26 participants. The
results were corrected for multiple comparisons using the FWER method. While best practices for
fMRI analysis (39) due to low perfusion signal-to-noise-ratio and our modest sample size (N<30),
a cluster-level threshold of p<0.001, Pcrwer<0.05, and extent thresholding k>100, and voxel-level
primary threshold of p<0.005 (T>2.65, Z > 2.57) was chosen. To enhance transparency, we also
display the primary threshold of p<0.001 thresholded maps in Supplementary Figure S1. The
significant clusters were then identified using the Harvard-Oxford atlas (40) on FSL to derive
cortical and subcortical brain regions.
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BOLD Region of Interest (ROI) Selection: To understand network-level alterations from ibogaine,
the brain was parcellated into 12 networks and 120 ROIs spanning whole-brain cortical and
subcortical regions. The cortical parcellation was extracted from Schaefer’s 100 brain parcellation
(42), including 7 cortical networks: central executive network, default mode network, ventral
attention or salience network, dorsal attention network, limbic network, somatomotor network,
and visual network. The bilateral dorsolateral prefrontal cortex (DLPFC) was also included and
extracted from the Multi-Subject Dictionary Learning atlas (42). To cover subcortical regions, we
included 20 regions classified into 6 networks: amygdala, ventral striatum, thalamus,
hippocampus, and sgACC. The bilateral executive, sensorimotor, and striatum limbic sub-regions
were predefined using the Oxford-GSK-Imanova Striatal Connectivity Atlas (43). We extracted 6
sub-regions of the amygdala using the Juelich histological atlas (44): the bilateral centromedian
amygdala (CMA), bilateral laterobasal amygdala (LBA), and bilateral superficial amygdala (SA).
Lastly, bilateral thalamus and hippocampus were extracted from the Harvard-Oxford cortical and
subcortical structural atlases (FSL v5.0.9) (45), and bilateral sJACC were extracted from the Yale
Brodmann atlas (46). The full list of 120 ROIs is available in Supplementary Table S3.

BOLD rsFC: Functional scans were merged into a single time series for analysis. All FCs were
calculated from Pearson correlation coefficients using the Python nilearn toolbox, which was then
transformed into Fisher's Z scores for further study. All statistical analyses were conducted in
MATLAB. A one-way ANOVA was used to evaluate FC pairs statistically different across time
points (baseline/immediate post/1-month post). Due to the novel and hypothesis-generating nature
of this study, and the small sample size (power calculation = 0.3), we used liberal statistical
thresholds for BOLD rsFC analysis, i.e., uncorrected p<0.005. A post hoc t-test following
ANOVA was used to determine the directionality of effects, and a Cohen’s d effect size between
each group pair was also calculated (Supplementary Table S4).

Correlations to clinical scores: For subregions that showed significant changes in rCBF after
treatment, we used a 2-way repeated measures ANOVA, conducted in MATLAB, to see if changes
in imaging modalities predict clinical outcomes seen in the cohort (15); WHODAS (47), and
CAPS-5 (48) from baseline to immediate and 1-month post-treatment. Results were corrected for
sphericity using the Greenhouse-Geisser p<0.05 threshold. To understand clinical associations, the
rCBF changes within significant subregions of the ASL results were modeled in linear regression
to visualize the relationships.
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Results

ASL: A one-way repeated measures analysis of variance (ANOVA) showed increased rCBF in
specific clusters. Overall, we observed a gradual increase in the mean rCBF after ibogaine
treatment in cortical, limbic, and striatal regions.

Figure 2. Pairwise contrasts of regional cerebral blood flow (rCBF) after ibogaine treatment (n = 26). [A]
Regions in yellow show an increase in rCBF from baseline to immediately post-treatment, anterior cingulate cluster:
p = 0.0063**; insular and surrounding cluster: p = 0.014* (uncorrected results shown for visualization only). [B]
Regions in yellow show a significant increase in rCBF from baseline to one-month follow-up, anterior & middle
cingulate cluster: p = 0.000073***, pcewer = 0.0090**; insular and surrounding cluster: p = 0.00037***, pcrwer =
0.024* (cluster-level FWER corrected). [C] Mean cluster values were extracted per participant at all three time points
and visualized using boxplots (exclusive median quartile calculation) with whiskers representing the 1.5 interquartile
range (IQR). The black cross (‘x”) represents mean rCBF values. [D] Atlas of significant clusters (in yellow) with
rCBF changes from baseline to one-month follow-up.

At the 1-month follow-up, a significant increase in rCBF was observed from baseline in 2 clusters,
parceled into 6 subregions (cluster pc<0.001, voxel pv<0.005, and family-wise error correction rate
prwer<0.05). These increases were observed bilaterally in the anterior and middle cingulate cortex,
and in the left insula, planum polare, orbitofrontal cortex, and putamen (Figure 2B). Increases in
rCBF (uncorrected p = 0.0063 and p = 0.014) were also observed at the immediate-post follow-up
but did not pass FWER (Figure 2A). Detailed values are shown in Supplementary Figure S2.

BOLD: Exploratory analyses of the resting-state BOLD fMRI data revealed the reorganization of
widespread functional brain networks post-treatment. A repeated measures one-way network-level
ANOVA was conducted across the 12 networks: central executive network, default mode network
(including the dorsolateral prefrontal cortex), ventral attention or salience network, dorsal attention
network, limbic network, somatomotor network, visual network, amygdala, ventral striatum,
thalamus, hippocampus, and subgenual anterior cingulate cortex (SgACC) networks.

We found 16 rsFC pairs that met our statistical threshold (uncorrected p<0.005), providing
preliminary evidence of a whole-brain network reorganization following ibogaine treatment. These
results suggest that visual, somatosensory, limbic (temporal pole, hippocampus, and amygdala),
default mode, dorsal attention, and salience networks are subject to the most changes in functional
connectivity after ibogaine treatment. Detailed information and effect sizes for all 16 rsFC pairs
are provided in Supplementary Table S4. Six rsFC pairs with the most notable changes are shown
in Figure 3A. Since none of these pairs passed the correction for multiple comparisons, further
investigation of clinical correlations is not reported.

Figure 3. Whole-brain functional network reorganization after ibogaine treatment. [A] Boxplots of group-level
trends in rsFC of the 6 most significant pairs. Note: These are group averages of changes in relative connectivity. The
whiskers are drawn within the 1.5 IQR value. [B] 16 rsFC pairs (uncorrected p<0.005) are plotted on a glass brain to
visualize the widespread nature of the effects on functional connectivity. Each colored dot represents the node for
each ROI.

Clinical correlations: We conducted a repeated measures ANOVA with the 6 significant
subregions (pcrwer<0.05) from the ASL results and explored if rCBF changes were associated with
clinical disability and PTSD outcomes, yielding 12 tests. Although no associations survived FDR
correction, specific findings (uncorrected p<0.05) show moderate effect sizes (r=0.5), which we



report as exploratory findings. Our model showed a relationship between rCBF increases in the
left insula and left cingulate cortex and reductions in functional disability from baseline to one-
month follow-up, as measured by World Health Organization Disability Assessment Schedule 2.0
(WHODAS)(47) total scores (the primary clinical outcome of this study). See Figure 4 for
scatterplots of changes in rCBF and changes in WHODAS scores. The six subscales of the
WHODAS (cognition, mobility, self-care, getting along, life activities, and participation) were
further explored, and rCBF increases in the left insula showed strong (r>0.6) associations with
improvement in mobility and life activity. No associations were found with the clinician-
administered PTSD scale for the DSM-5 CAPS-5 (48).

Figure 4. Increases in left insular and anterior cingulate cerebral blood flow one month after ibogaine treatment
were associated with improvements in functional disability. Scatterplots show individual data points with linear
regression lines, 95% confidence intervals, uncorrected p-values, and Pearson’s correlation coefficients for
visualization. [A] Change in rCBF in the left insula vs. changes in WHODAS overall score, life activity subscales, and
mobility subscales from baseline to one-month follow-up. [B] Change in rCBF in the left cingulate cluster vs. change
in WHODAS overall score from baseline to one-month follow-up.
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Discussion

Our multimodal imaging findings indicate broad changes in functional connectivity and increase
in regional metabolic activity following a single session of MISTIC in combat veterans. ASL
imaging showed increases in rCBF in the left insula, orbitofrontal cortex, putamen, and planum
polare, and bilaterally in the anterior and middle cingulate cortex immediately post-treatment, and
further increases one month after ibogaine treatment, compared to baseline. Importantly, increases
in rCBF in the insula and anterior cingulate that persisted one month after treatment were
associated with sustained improvements in overall disability. Exploratory BOLD functional
connectivity analyses revealed pre- to post-treatment functional connectivity changes between 16
network pairs, notably between limbic, default mode, dorsal attention, and salience networks.

The limbic system, including the amygdala, hippocampus, and cingulate gyrus, is involved in
cognition, emotional and social processing, learning, and memory (49). Several studies of adults
with TBI and/or PTSD have found altered rCBF and dysfunction in limbic and paralimbic regions
(50-52). Using ASL, we found a significant increase in rCBF in similar limbic regions such as the
anterior and middle cingulate cortex, suggesting a potential shift in rCBF patterns after ibogaine
treatment. While the anterior cingulate connects to the “emotional” limbic system and the
“cognitive” prefrontal cortex, the middle cingulate plays a role in social behavior and monitoring
the outcomes of decisions during social interactions (53,54). Using BOLD fMRI, global
widespread changes in rsFC were found after treatment with MISTIC, which included limbic
regions. A similar global effect has been reported in the study of other psychedelic substances (55).
Among these widespread effects, changes in functional connections to the prefrontal hub of the
default mode network were observed; specifically, amygdala-medial prefrontal cortex (mPFC)
connectivity was significantly reduced after ibogaine treatment compared to baseline. The
amygdala regulates emotion processing and fear conditioning (56,57). Functional imaging studies
of patients with PTSD have shown heightened resting amygdala-frontal connectivity that underlies
emotional dysregulation (58). The hyperactivity of the mPFC can lead to excessive self-referential
thinking and rumination (subclinical features of depression) and anxiety, which are comorbid in
this cohort. Therefore, the treatment-induced reduction of the amygdala-default mode network
functional connectivity may reflect a MISTIC-related dampening of emotionally reactive circuitry.

Following ibogaine treatment, increased functional connectivity between the left dorsal attention
network (implicated in goal-directed attention maintenance) and the hippocampus (implicated in
memory consolidation and learning) could suggest treatment-induced improvements in memory
integration with the attention network (59). This is particularly important as memory impairment
and difficulty maintaining attention on a task are common, disabling effects of TBI (60,61). The
dorsal attention and hippocampal networks have been implicated in PTSD and TBI, so it is
promising that their reconfiguration persists ~3-4 days and 1-month post-treatment. We postulate
that ibogaine may involve a gradual reshaping of this neural network away from the disordered
state.
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Across our analyses, changes in regions associated with sensory processing were also found. Using
ASL, significant increases were seen in the putamen, which affects motor control, learning,
language processing, and addiction (62,63); the planum polare, a portion of the superior temporal
gyrus involved in auditory and receptive language processing (64); the orbitofrontal cortex,
responsible for sensory integration, emotion, and reward-related behavior (65); and the insula, a
convergent point of interoceptive processing (or a sense of inner self) (66,67) with a role in
affective-perceptual and cognitive-evaluative forms of empathy. Another interesting network
arising from our BOLD analysis is the salience network, which detects and filters important
sensory and emotional stimuli. Daniels et al. (2010) found that compared to controls, PTSD groups
have difficulties in working memory tasks and task-induced switching, engaging, and disengaging
the default mode and central executive networks, a function of the salience network (68). The
salience network may become hyperactive, leading to an overemphasis on traumatic stimuli and a
heightened sensitivity to environmental cues (69). These changes in the somatosensory network
warrant further investigation into their contribution to post-treatment reconfiguration. Overall, our
exploratory analyses revealed overlap in the limbic and sensorimotor regions implicated by both
modalities.

Lastly, we explored the associations of the observed rCBF alterations in MISTIC-induced
clinically significant therapeutic outcomes. Several studies have shown that decreases in rCBF
resulting from TBI are related to worse histopathologic and behavioral outcomes (52,70). In
particular, evidence suggests that cognitive impairment in patients with mild TBI could be due to
regional CBF abnormalities (71). Lowered CBF is also associated with poorer memory and
executive function/processing speed (72) and is linked to neurodegeneration (73). We found
moderate associations (r>0.5) between rCBF increases in the left insula and ACC and greater
improvements in functional disability one month after ibogaine treatment (Figure 4). With a role
in explicit motivation (74,75), greater insular activity is thought to induce a conscious desire to get
around and complete domestic roles. Evidence also suggests that the insula plays a role in self-
determined behavior, such as engaging in intrinsically motivated leisure activities (76). This is
perhaps reflected in the strong associations of the insular rCBF change (r>0.6) with improvements
in WHODAS subscales of mobility and life activity (77). The left ACC has also been shown to
have a role in external motivation and social cognition (78,79). It is worth noting that the disability
scores showed gradual improvement until the 1-month time point, at which stage the change in
disability symptoms compared to the baseline was found to be most significant. This gradation is
similar to the gradual rCBF increases observed in the left insula and ACC from baseline to one
month post-treatment.

Based on existing psychedelic literature on substances such as LSD, psilocybin, N, N-
Dimethyltryptamine, and methylenedioxy-methamphetamine, Carhart et al. proposed a unified
model for the therapeutic action of psychedelics, formulated as "relaxed beliefs under
psychedelics” (REBUS) that integrates the free-energy principle and the entropic brain hypothesis
(80). The model suggests that psychedelics relax high-level brain patterns, liberating the flow of
information from intrinsic sources like the limbic system, although additional research into how
ibogaine may align with the REBUS framework is still needed.
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Limitations: While this exploratory work represents the first multimodal functional neuroimaging
investigation of ibogaine’s neural correlates, there are limitations to consider. Our sample size was
modest and homogenous; limited to adult, middle-aged, male combat veterans with TBI. The low
statistical power prevented some results from meeting the standard statistical rigor of multiple
comparisons, and thus, larger, adequately powered studies are needed to verify these findings. Due
to the novel, proof-of-principle nature of this work, this was a single-arm, open-label observational
study and did not include a blind or control group. Since most of the SOVs had several TBIs across
their lifetime, we did not have the necessary information to include the radiological characteristics
of the site of brain injury. Next, when correlating neuroimaging changes with clinical
improvements in PTSD symptoms, results were limited by the lack of variance in CAPS, since the
majority of participants showed near-complete to complete improvement. In the future, data
collected in larger, more diverse groups with a placebo control would be required to account for
other influential factors and to confirm the findings from our study (15).

Conclusion

Modern imaging techniques and years of indigenous medicine bring us to an enigmatic
intersection, to systematically unveil the therapeutic potential of psychedelic medicines. Special
forces veterans have particularly high rates of TBI and PTSD and often have limited and less
efficacious treatments available for their complex symptomology (8). Therefore, there is a strong
impetus to understand the neural basis of emerging alternative treatments. Our multimodal imaging
findings provide initial insights into the neural processes of magnesium-ibogaine treatment for
combat-related TBI. Importantly, specific alterations in regional metabolic activity were
associated with the large improvements in functional disability (pcorrected < 0.001; Cohen’s d =2.20)
observed after treatment (15). This was the driving force of this imaging analysis: to explore the
neural underpinnings of the striking clinical improvements. Additional research replicating and
expanding the current findings in larger, controlled studies is needed to further elucidate the neural
mechanisms underlying the promising clinical effects of ibogaine.
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