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Abstract 20 

Background 21 

Treatment-Resistant Depression (TRD) refers to patients with major depressive disorder who do 22 

not remit after two or more antidepressant trials.  TRD is common and highly debilitating, but its 23 

neurobiological basis remains poorly understood. Recent neuroimaging studies have revealed 24 

cortical connectivity gradients that dissociate primary sensorimotor areas from higher-order 25 

associative cortices. This fundamental topography determines cortical information flow and is 26 

affected by psychiatric disorders. We examined how TRD impacts gradient-based hierarchical 27 

cortical organization. 28 

Methods 29 

In this secondary study, we analyzed resting-state fMRI data from a mindfulness-based 30 

intervention enrolling 56 TRD patients and 28 healthy controls. Using gradient extraction tools, 31 

baseline measures of cortical gradient dispersion within and between functional brain networks 32 

were derived, compared across groups, and associated with graph theoretical measures of network 33 

topology. In patients, correlation analyses were used to associate measures of cortical gradient 34 

dispersion with clinical measures of anxiety, depression, and mindfulness at baseline and 35 

following the intervention. 36 

Results 37 

Cortical gradient dispersion was reduced within major intrinsic brain networks in TRD. Reduced 38 

cortical gradient dispersion correlated with increased network degree assessed through graph 39 

theory-based measures of network topology. Lower dispersion among Default Mode, Control, and 40 

Limbic Network nodes related to baseline levels of trait anxiety, depression, and mindfulness. 41 
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 3 

Baseline Limbic Network dispersion in patients predicted trait anxiety scores 24 weeks after the 42 

intervention.  43 

Conclusions 44 

Our findings provide preliminary support for widespread alterations in cortical gradient 45 

architecture in TRD, implicating a significant role for transmodal and limbic networks in 46 

mediating depression, anxiety, and lower mindfulness in patients. 47 

Introduction  48 

Major depression is a common, debilitating disorder and among the leading causes of disability 49 

worldwide (1). Although several treatment options are available for depression, a significant 50 

number of patients do not improve despite adequate antidepressant trials (2). Patients that, after 51 

repeated treatments, do not reach acceptable levels of functioning and well-being, eventually 52 

present with treatment-resistant depression (TRD), a condition associated with a significant social 53 

and economic burden (2,3). TRD is often defined as the failure to remit after at least two 54 

antidepressant trials of adequate dose and duration (2,3). A consensus characterization of TRD, 55 

however, has yet to be achieved, partly due to a poor understanding of its neurobiological basis 56 

and a lack of reliable diagnostic biomarkers (4,5).  57 

Resting-state fMRI (rs-fMRI) is a neuroimaging modality commonly used to measure functional 58 

connectivity of brain networks in terms of correlated spontaneous activity among distant brain 59 

regions (6,7). This method has proven useful in revealing altered functional connectivity within 60 

and between large-scale brain networks in depression (5,8–12). Crucially, brain network 61 

dysfunctions in major depression primarily affect limbic and higher-order associative systems 62 

including the Default Mode Network (DMN) (10,13,14), Control Network (CoN) (5,8–12), and 63 
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 4 

Limbic Network (LiN) (5,8–12), with imbalances in these systems being linked to emotional 64 

dysregulation and maladaptive self-referential processes, such as rumination (9,15,16).  65 

Fundamental principles in behavioral neurology and recent neuroimaging studies provide 66 

convergent support for a hierarchical cortical organization that separates primary sensorimotor 67 

systems from transmodal associative areas (17–19). Cortical microstructure, connectivity, and 68 

gene expression findings point to dominant sensorimotor-to-transmodal gradients organizing the 69 

propagation of sensory inputs from primary areas into transmodal regions along multiple cortical 70 

relays (17,18,20). This large-scale brain system organization anchors the DMN at one end of the 71 

hierarchy with respect to primary sensorimotor areas, capturing a functional topography that 72 

enables the transition from perception to more abstract cognitive functions (9,15,16). Several 73 

neuropsychiatric disorders, including major depression (21), cognitive vulnerability to depression 74 

(22), and autism (20) profoundly impact connectivity-based cortical gradient organization. Major 75 

depression also disrupts global topography by producing focal alterations of cortical gradients 76 

among primary sensory and transmodal regions involved in high-order cognitive processing (21). 77 

Accordingly, we hypothesized that TRD would impact hierarchical brain network organization 78 

and that functional deficits affecting the DMN, CoN, and LiN would predict baseline and future 79 

symptoms of depression following group treatment with either mindfulness-based cognitive 80 

therapy (MBCT) or a health enhancement program (HEP). We retrospectively applied recently 81 

developed gradient decomposition techniques (23) to baseline rs-fMRI data from 56 TRD patients 82 

subsequently randomized to MBCT or HEP, and from 28 healthy controls (HC). This approach 83 

was leveraged to test the hypothesis that TRD, relative to HC, involves perturbation of hierarchical 84 

gradients among “canonical” large-scale brain networks (24). To aid with interpreting gradient-85 

based deficits in network topography, we further contextualize the results by using a 86 
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complementary measure of nodal dysfunction based on network topology, specifically nodal 87 

degree (25). 88 

Materials and Methods 89 

Subjects 90 

All participants or their surrogates provided written informed consent prior to participation in 91 

accordance with the declaration of Helsinki. The University of California, San Francisco (UCSF) 92 

Committee on Human Research approved the study.  93 

An initial cohort of 59 TRD patients were enrolled in a randomized controlled behavioral 94 

intervention study that included baseline and post-treatment fMRI sessions, and 30 HC were 95 

recruited to provide normative baseline fMRI data. Participants were recruited from outpatient 96 

psychiatry and general medicine clinics at UCSF, the outpatient psychiatry clinic at Kaiser 97 

Permanente in San Francisco, and through advertisements and clinical referrals (26,27). TRD 98 

patient eligibility screening was completed in person. Eligible patients met Structured Clinical 99 

Interview for DSM-IV-TR Axis I (SCID-I/P) (28) criteria for major depression and had a Hamilton 100 

Depression Severity Rating Scale (HAMD-17) score of 14 or greater. Furthermore, to qualify as 101 

TRD, patients had to be taking antidepressant medication with evidence of two or more adequate 102 

trials prescribed during the current episode as assessed with the Antidepressant Treatment History 103 

Form (29). Patients were excluded for the following: lifetime history of bipolar disorder, 104 

schizophrenia, or any psychotic disorder; substance abuse or dependence within three months of 105 

study onset; currently suicidal, dangerous to others, or self-injurious; undergoing psychotherapy 106 

during the eight-week treatment portion of the study; or a score of <25 on the Mini Mental State 107 

Examination (30).  108 
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The HC group was matched to the TRD group on age, gender, and handedness and had no history 109 

of a major Axis I psychiatric disorder, neurological illness, or current use of psychotropic 110 

medication. Participants were required to be at least 18 years old, fluent in English, have no MRI 111 

contraindications, and to have normal or corrected-to-normal vision. 112 

For each participant, we additionally assessed depressive symptoms through the Quick Inventory 113 

of Depression Symptomatology (QIDS-SR16) (31) and the Nolen-Hoeksema's Response Styles 114 

Questionnaire (RSQ22) (32); levels of mindfulness were assessed with the Five Facet Mindfulness 115 

Questionnaire (FFMQ) (33); and levels of state and trait anxiety were assessed through the State-116 

Trait Anxiety Inventory (STAI trait and state) (34). Study participants self-reported race and 117 

ethnicity, sex, handedness, and years of education.  118 

From the initially recruited sample, two HCs and three TRD patients had to be excluded based on 119 

excessive head movement in the scanner (see details below), resulting in the final analyzed sample 120 

of 56 TRD and 28 HC participants (Table 1).  121 

Protocol 122 

TRD patients were part of a randomized controlled trial comparing MBCT to a HEP as adjunctive 123 

treatments to ongoing antidepressant medication (26,27) Briefly, MBCT involved guided 124 

meditations (35); HEP involved activities to promote health (36). Patients were assessed with rs-125 

fMRI at baseline and following intervention, while HC were assessed at baseline and did not 126 

undergo treatment (26,27). Of the 56 TRD included in our study, 27 went through the MBCT and 127 

29 through the HEP intervention. Additional details are available in the Supplement and in 128 

previously published work. Only rs-fMRI data at baseline are analyzed in the present study. 129 
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Neuroimaging data acquisition and preprocessing 130 

Neuroimaging data were acquired on a Siemens 3-T TIM TRIO scanner located at the UCSF 131 

Neuroimaging Center.  A high-resolution anatomical scan was acquired using a 3-D MP-RAGE 132 

sequence, with scan time 5 min 17 s, flip angle 9 degrees, FOV = 220 mm, 160 slices per slab, 1.2 133 

mm thick, no gap, TR = 2.30 s, TE = 2.94 ms.  Functional scans were acquired using an EPI-134 

BOLD sequence, TR = 2, TE= 30 ms, FoV = 220 MM, flip angle = 77 degrees, bandwidth = 2298 135 

Hx/pixel, matrix = 64 x 64. 30 slices (3 mm thick, 1-mm gap). Scans were acquired in an axial-136 

oblique plane, parallel to the anterior-posterior commissure (AC-PC) line. Participants were 137 

instructed to rest with eyes open during the 5 min and 24 s EPI-BOLD functional sequence. 138 

The software fMRIPrep (https://fmriprep.org/en/stable/) (37) was used for data preprocessing. 139 

Anatomical MP-RAGE images were corrected for intensity non-uniformity, skull-stripped, and 140 

segmented for cerebrospinal fluid, white matter, and gray matter. Volume-based spatial 141 

normalization to MNI standard space was performed through nonlinear registration of the MP-142 

RAGE with the T1-weighted MNI template brain (CBM152). The first five functional volumes 143 

were removed to allow for scanner equilibration, resulting in a total number of 157 volumes for 144 

the analyses. A mean reference volume and its skull-stripped version were generated, then co-145 

registered to the structural reference using affine registration. Head-motion parameters 146 

(transformation matrices and the six corresponding rotation and translation parameters) were 147 

estimated and used to compute framewise head displacement time series. Functional images were 148 

slice-time corrected, realigned, and normalized to MNI standard space applying the structural 149 

transformation matrix to the co-registered functional data. The resulting volumes with 2 mm3 150 

isotropic resolution were spatially smoothed with a 6 mm radius Gaussian kernel and bandpass 151 

filtered in the 0.008–0.15 Hz frequency range. Nuisance parameters in the preprocessed data were 152 
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estimated for the cerebrospinal fluid and white matter. Additional nuisance parameters included 153 

the three translational and three rotational motion parameters, the temporal derivatives of the 154 

previous eight terms (white matter/cerebrospinal fluid/six motion time series), and the squares of 155 

the previous 16 terms (38,39). Nuisance parameters were filtered for the same frequency range as 156 

rs-fMRI data and regressed out from the filtered rs-fMRI data (38,39). The denoised data were 157 

used in subsequent analyses. Subjects were included only if their mean framewise head 158 

displacement in the scanner (38,39) was below the threshold of 0.55 mm recommended in previous 159 

work (40). Global signal regressed rs-fMRI data were also generated using the time series extracted 160 

from a whole-brain mask and used for control analyses. 161 

Functional connectivity gradients 162 

The Schaefer Atlas (41) was used to derive rs-fMRI activity time series for 400 cortical regions 163 

(Figure 1A-B). Pearson’s correlation was applied to the regional activity time series to derive 164 

individual functional connectivity matrices (Figure 1Ca) and group-mean functional connectivity 165 

matrices for HC and TRD (Figure S1).  166 

The diffusion embedding approach (17,18),  as implemented by the toolbox BrainSpace 167 

 (https://brainspace.readthedocs.io/en/latest/pages/getting_started.html) (23), was then applied to 168 

the HC group mean functional connectivity matrix to estimate connectivity gradients. Briefly, the 169 

top 10% strongest functional connections were retained for each parcel, referred to hereafter as a 170 

node, and cosine similarity was calculated between each pair of nodes to generate a dissimilarity 171 

matrix (Figure 1Cb) (42,43). Diffusion map embedding was then applied to decompose the 172 

functional connectome into primary components, referred to as gradients, with each gradient 173 

explaining varying levels of variance in connectivity (Figure 1Cc). These gradients discriminate 174 

across levels of the cortical hierarchy (i.e., sensory processing versus higher-order cognition), 175 
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whereas node-specific gradient values reflect the similarity in connectivity along this sensory-176 

transmodal axis. An identical approach was used to derive connectivity gradients from the TRD 177 

group mean connectivity matrix and from the connectivity matrices of individual participants. The 178 

resulting gradient maps were subsequently aligned to the gradients derived at the group-level in 179 

HCs using iterative Procrustes rotation, therefore enabling comparisons across individual 180 

embedding solutions (20,23,44). Control analyses were performed with publicly available cortical 181 

gradients maps (17) (see Supplement). 182 

Nodal dispersion 183 

For each participant, we then derived a measure of within-network nodal dispersion. We plotted 184 

the first three connectivity gradients – since these explained most of the underlying variance (see 185 

elbow plot in Figure 1 Cc) – against each other to derive a three-dimensional manifold in which 186 

we calculated the Euclidean distance between nodes belonging to the same intrinsic brain network 187 

(44) (Figure 1Cd). Nodal dispersion was derived for each node belonging to a specific intrinsic 188 

brain network and averaged across nodes within intrinsic brain networks, yielding a final estimate 189 

of within-network nodal dispersion for each participant. We performed several control analyses to 190 

assess the impact of methodological parameters on our analyses (see Supplement). Further, we 191 

derived a measure of between-network nodal dispersion calculated as the Euclidean distance 192 

between network centroids (i.e., the arithmetic mean in gradient space of all nodes belonging to 193 

the same network). 194 

Nodal degree 195 

In parallel to the connectivity gradient approach, we also derived a traditional measure of within-196 

network nodal degree for all participants (25) by using the publicly available Brain Connectivity 197 

Toolbox (https://sites.google.com/site/bctnet/). 198 
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Nodal degree is a widely used measure of network topology commonly derived using graph-199 

theoretical approaches (25). Briefly, individual connectivity matrices were thresholded for 200 

correlation values below 0.35 (retaining a median of 26% of connections) and binarized (Figure 201 

1Ce). To control for threshold choice, measures of nodal degree were derived also for connectivity 202 

thresholds of 0.45 and 0.25 (respectively retaining 16% and 38% of connections). At any threshold, 203 

patients and controls did not significantly differ in respect to the density of retained connections. 204 

Weighted connectivity matrices were used to count the number of surviving edges between a 205 

specific node within a network and all other nodes within the same network (Figure 1Cf). The sum 206 

of surviving edges for a node was then divided by the total amount of edges within the network. 207 

Nodal degree measures were derived for each single node in a network and averaged across nodes 208 

in the same network. This procedure resulted in a measure of within-network nodal degree 209 

reflecting the level of integration between nodes belonging to the same network.  210 

Statistical analyses 211 

In house MATLAB R2021a (https://www.mathworks.com/products/matlab.html) and R 4.1.1 212 

(https://www.r-project.org/) scripts were used to perform the statistical analyses. See 213 

Supplementary Methods for more details. 214 

Results 215 

Cortical connectivity gradients in HCs and TRD  216 

We applied a diffusion gradient approach separately on rs-fMRI-based connectivity data from HCs 217 

and TRD to derive cortical connectivity gradients reflecting processing hierarchies spanning 218 

sensory and transmodal areas (Figure 2 and Figure S2A).  The first three principal gradients 219 

derived from rs-fMRI data of HCs, explained 34.9% of the variance in functional connectivity 220 

(elbow plot in Figure 1 Cc). Gradient 1 anchored sensorimotor areas at its positive extreme, while 221 
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regions belonging to the DMN were located at the opposite, negative extreme (Figure 2A-B). 222 

Sensorimotor and DMN areas occupied the negative extreme on Gradient 2, while visual-sensory 223 

areas populated the positive end of this gradient (Figure 2A-B). Notably, these first two 224 

connectivity gradients overlap with previously reported gradients in functional connectivity, 225 

structural connectivity, myelin density, and genetic expression (17,18), which consistently 226 

separate sensory processing regions from transmodal areas of the DMN. Gradient 3 showed a more 227 

complex pattern, segregating regions of the Dorsal Attention Network from regions belonging to 228 

the Salience Network, potentially reflecting a higher-order, attention-related gradient separating 229 

regions attending to externally presented cues (45) from regions devoted to processing visceral 230 

and interoceptive information (46,47). The normative gradients identified in our HCs sample 231 

showed strong to moderate correspondence to gradients described in prior foundational work 232 

(Figure 2C) (17). Similar fundamental properties of hierarchical brain organization were found in 233 

patients with TRD after aligning the principal connectivity gradients of patients to those of HCs 234 

(Figure 2D-E), in support of the notion that cortical gradients reflect fundamental properties of 235 

brain topography in both health and disease (17,18,20,21). Gradients 4-6 explained a lower amount 236 

of variance and showed less discernible patterns of regional variation (Figure S2). 237 

Within-network nodal dispersion 238 

Node-level gradient comparisons (p<0.05, uncorrected) revealed increased gradient scores in TRD 239 

patients in sensory and early transmodal regions, such as the ventromedial occipital and posterior 240 

inferior temporal cortices, together with decreased gradient scores in transmodal areas including 241 

the precuneus, the medial prefrontal, and cingulate cortices (Figure 3A). We then derived a 242 

measure of within-network nodal dispersion (Figure 1Cd), reflecting the level of connectedness of 243 

nodes belonging to the same intrinsic brain network (44). A two-way analysis of variance revealed 244 
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a main effect of network, F(6,567)=15.2, p<0.0005, and an main effect of group, F(2,567)=18.0, 245 

p<0.0005. Pair-wise comparisons revealed that all networks, except for the Salience and 246 

Sensorimotor Networks, showed reduced within-network nodal dispersion in TRD compared to 247 

HCs (Figure 3B; p<0.05, FDR corrected for multiple comparisons), suggesting overall higher 248 

within-network connectedness. We performed control analyses to assess the impact of head 249 

movement on within-network dispersion and assessed the impact of methodological parameters 250 

including (i) global signal regression; (ii) atlas parcellation; (iii) gradient decomposition through 251 

Laplacian embedding; (iv) angular normalization to generate the dissimilarity matrices; (v) adding 252 

Gradients 4-6 when computing within-network nodal dispersion; or (vi) using publicly available 253 

gradient maps to derive individual gradients (see Supplementary Results, Figures S2-S4, and 254 

Tables S1-S2).  255 

We analyzed whether TRD also affected cortical hierarchies between networks in addition to 256 

within-network gradient organization. We derived a measure of between-network nodal dispersion 257 

that revealed reduced nodal dispersion in TRD between the Sensorimotor and the DMN, between 258 

the Salience and the DMN, and between the CoN and Dorsal Attention Network, although none 259 

of these findings survived correction for multiple comparisons (Figure 4; p<0.05, uncorrected).  260 

Within-network nodal degree 261 

Comprehensively, the previous findings suggested that in TRD, nodes belonging to the same 262 

network are more integrated to each other. To confirm this hypothesis, we derived a 263 

complementary measure of nodal integration based on graph theoretical approaches, namely 264 

within-network nodal degree. A two-way analysis of variance revealed a main effect of network, 265 

F(6,567)=187.9, p<0.0005, and a weaker main effect of group, F(2,567)=3.1, p<0.05. Pair-wise 266 

comparisons revealed that there were no significant between-group differences in within-network 267 
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degree that survived multiple comparisons. However, DMN and Sensorimotor Network nodal 268 

degree was significantly lower in TRD compared to HCs (Figure 3C; p<0.05, uncorrected).  269 

When relating within-network nodal dispersion to within-network nodal degree, we consistently 270 

found a significant negative association between both measures, particularly in TRD and to a lesser 271 

extent in HCs (Figure 3D; p<0.05, FDR corrected for multiple comparisons if not reported 272 

otherwise, Pearson’s correlation coefficients and associated Fisher r-to-z tests for independent 273 

samples comparing the strength of correlations across groups reported in the plots). Notably, these 274 

findings were robust across distinct thresholds applied to generate the weighted connectivity 275 

matrices used to estimate nodal degree (Figure S3). In summary, these findings support the notion 276 

that decreased within-nodal dispersion, at least in patients, reflects within-network hyper-277 

connectedness. This negative association between nodal measures was prominent in TRD but not 278 

as prominent in HCs, suggesting a more complex relationship between cortical topology and 279 

topography in the healthy human brain. 280 

Within-network nodal dispersion and baseline symptoms of depression 281 

Given the recurrent association of the DMN, CoN and LiN with clinical symptoms of depression 282 

(9,15,16), we first investigated the association of within-network nodal dispersion and degree in 283 

these systems with clinical depression severity in patients as assessed with the HDRS-17. Within-284 

network nodal dispersion of any network did not significantly correlate with HDRS-17, although 285 

within-network nodal degree of the CoN and LiN positively correlated with HDRS scores (Table 286 

S3). Subsequently, we assessed the relationship between within-network nodal dispersion of the 287 

DMN, CoN, and LiN and clinical measures of increased anxiety, depressed mood, and reduced 288 

mindfulness (16,26,27). To assess whether associations between nodal dispersion and clinical 289 

measures were specific to higher-order cognitive and emotional systems, we also report 290 
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correlations between clinical measures and nodal dispersion of the Visual Network. In line with 291 

previous work, our patient sample showed increased levels of trait anxiety as measured through 292 

the STAI questionnaire (Figure 5A; p<0.0005), increased levels of depressive symptoms using the 293 

RSQ22 (Figure 5B; p<0.0005), and decreased levels of mindfulness (26,27) as measured through 294 

the FFMQ (Figure 5C; p<0.0005). Within-network nodal dispersion of the DMN, CoN and LiN 295 

negatively correlated with trait anxiety and depression while it positively correlated with 296 

mindfulness in patients but not in HCs (Figure 5D-E). Dispersion of the Visual Network did not 297 

significantly correlate with any clinical measure. Consistent with the previously described negative 298 

relationship between nodal dispersion and nodal degree, within-network nodal degree of the DMN, 299 

CoN, and LiN positively correlated with trait anxiety and depression while it negatively correlated 300 

with mindfulness in patients but not in HCs (Figure 5G-I).  301 

Within-network nodal dispersion and change scores in clinial symptoms 302 

In line with our previous studies (26,27), patients on the MBCT arm showed greater HDRS-17 303 

reductions relative to the control intervention, although in our study the effect only reached 304 

trending significance (F(1,107)=3.07; p=0.08; Figure S5) (26,27), likely due to the smaller patient 305 

subset in this sample following head-movement control. We then assessed whether within-network 306 

nodal dispersion at baseline could predict STAI trait, FFMQ, and RSQ22 change scores, since 307 

these clinical questionnaires correlated with baseline nodal dispersion. A repeated measurement 308 

ANOVA revealed a main effect of time (but no effect of group), with improved STAI trait, FFMQ, 309 

and RSQ22 scores after 8 and 24 weeks in both the HEP and MBCT arms (Figure S6 and Table 310 

S4).  Multiple regression analyses revealed that LiN nodal dispersion at baseline predicted STAI 311 

trait change scores 24 weeks after the intervention (Figure 6; β(1,46)=0.63; p=0.01).   312 
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Discussion 313 

Functional connectivity of the human cortex can be decomposed in primary gradients that anchor, 314 

on one end, primary sensory and motor areas and on the other end, transmodal regions overlapping 315 

with the DMN. This study explored how TRD impacts this fundamental topography of hierarchical 316 

cortical organization. We capitalized on rs-fMRI data acquired in TRD patients and HCs and 317 

applied recently developed gradient extraction tools to assess gradient imbalances within major 318 

intrinsic brain networks. Although the global hierarchical architecture was similar across the two 319 

groups, we found that brain regions belonging to the same network are located more closely to 320 

each other in topographical gradient space in TRD relative to HCs. Reduced within-network nodal 321 

dispersion correlated with higher levels of nodal degree derived through graph theory-based 322 

topology measures, overall suggesting higher within-network functional integration in TRD. In 323 

patients, decreased nodal dispersion of higher-order cognitive and limbic networks correlated with 324 

depression, anxiety, and reduced mindfulness at baseline. Change in anxiety scores following a 325 

mindfulness-based intervention were predicted by limbic nodal dispersion. Overall, these findings 326 

suggest deleterious cortical network topography and topology in TRD and underscore the role of 327 

higher-order and limbic networks in mediating core symptoms of depression.  328 

Increased within-network integration in TRD 329 

The pervasive correlation between nodal degree and nodal dispersion in our patient sample 330 

suggests that TRD impacts cortical hierarchies by driving hyper-integration within several brain 331 

networks (48). Other neuropsychiatric conditions have been shown to impact cortical connectivity 332 

gradients. Autism spectrum disorder has been shown to alter brain topography by showing atypical 333 

connectivity transitions between sensory and higher-order DMN regions (20). Our findings align 334 

with previous reports of altered cortical gradient organization in individuals with cognitive 335 
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vulnerability to depression (22) and in a larger sample of patients with major depression (21). 336 

Individuals with cognitive vulnerability to depression have been shown to display reduced gradient 337 

scores in the left insula, which correlated with lower attentional scores in patients, suggesting that 338 

gradient reorganization may precede the onset of depression (22). A recent study involving a large 339 

sample of patients showed that major depressive disorder exhibits abnormal global topography of 340 

the principal sensory-to-transmodal gradient (21). These focal alterations of gradient scores mostly 341 

affected transmodal areas implicated in higher-order cognition overlapping with the DMN (21).  342 

Brain network hyper-integration mediates symptoms of depression  343 

Despite numerous efforts to map brain network dysfunctions in depression, important 344 

inconsistencies exist regarding the location and directionality of connectivity changes, with both 345 

hyper- (15), and hypo-connectivity findings reported in the literature (49). Disease duration, 346 

perseverance of symptoms, and heterogenous subtypes of depression (8,9) may account for 347 

important sources of variability, as do head movement in the scanner, and differing data acquisition 348 

protocols and preprocessing pipelines (38–40). Although our findings contrast with reports of 349 

decreased connectivity in attentional networks (10), they align well with previous reports of DMN 350 

hyper-connectivity found in patients with depression (9,15). Hyper-connectivity among DMN 351 

regions in depression is consistent with our interpretation of reduced nodal dispersion reflecting 352 

within-network hyper-integration. Prior studies in both HCs and depression have associated DMN 353 

hyper-synchrony with self-referential processes affected in depression, including reduced 354 

mindfulness and social-emotional dysfunctions (15,16,50), suggesting a deleterious nature of 355 

DMN hyper-integration in TRD.   356 
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Limitations and future directions 357 

Three limitations need to be considered when interpreting our findings as potential evidence of 358 

within-network hyper-integration in TRD. First, methods used to extract connectivity gradients 359 

may need further refinements when addressing gradient changes at the individual level and across 360 

clinical populations. Although findings of reduced within-network nodal dispersion were 361 

consistently found when using global signal regression or medium to high parcellated atlases, the 362 

method chosen to derive cortical connectivity gradients greatly influenced the analyses. Second, 363 

nodal dispersion in TRD did not correlate with HDRS-17 nor, except for the LiN, predicted clinical 364 

improvement following either MBCT or HEP. Gradient approaches have been mostly applied to 365 

study fundamental aspects of brain functioning by leveraging large samples. Our analyses may 366 

have suffered from sample size issues affecting both patients and controls. Given the recent 367 

discovery of distinct biotypes in major depressive disorder (8,9), longitudinal studies involving 368 

larger patient samples are needed to validate our findings. Future studies should confirm whether 369 

decreased nodal dispersion is a generalizable marker of network hyper-integration in TRD, and 370 

whether nodal dispersion can be normalized following tailored behavioral and pharmacological 371 

interventions. 372 

  373 

Jo
urn

al 
Pre-

pro
of



 18 

Acknowledgements 374 

This work was supported by NIH grant K99-AG065457 to LP, DP2-MH119735 to MS, 375 

NIH/NCCAM grant R01-AT004572-02S1 to SJE and DHM. We thank the participants and their 376 

families for their contributions to depression research. 377 

Disclosures 378 

The authors report no biomedical financial interests or potential conflicts of interest. 379 

Participants’ data is not publicly shared due to privacy concerns but is available from the senior 380 

author after reasonable request. Code is available on https://github.com/lollopasquini.  381 

  382 

Jo
urn

al 
Pre-

pro
of

https://github.com/lollopasquini


 19 

References 383 

1. Evans-Lacko S, Aguilar-Gaxiola S, Al-Hamzawi A, Alonso J, Benjet C, Bruffaerts R, et al. 384 

(2018): Socio-economic variations in the mental health treatment gap for people with 385 

anxiety, mood, and substance use disorders: Results from the WHO World Mental Health 386 

(WMH) surveys. Psychological Medicine 48.  387 

2. Berlim MT, Turecki G (2007): Definition, assessment, and staging of treatment-resistant 388 

refractory major depression: A review of current concepts and methods. Canadian Journal 389 

of Psychiatry, vol. 52.  390 

3. Fava M, Davidson KG (1996): Definition and epidemiology of treatment-resistant depression. 391 

Psychiatric Clinics of North America 19.  392 

4. Klok MPC, van Eijndhoven PF, Argyelan M, Schene AH, Tendolkar I (2019): Structural brain 393 

characteristics in treatment-resistant depression: review of magnetic resonance imaging 394 

studies. BJPsych Open 5.  395 

5. de Kwaasteniet BP, Rive MM, Ruhé HG, Schene AH, Veltman DJ, Fellinger L, et al. (2015): 396 

Decreased Resting-State Connectivity between Neurocognitive Networks in Treatment 397 

Resistant Depression . Frontiers in Psychiatry , vol. 6. p 28. 398 

6. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Essen DC van, Raichle ME (2005): The human 399 

brain is intrinsically organized into dynamic , anticorrelated functional networks. Proc Natl 400 

Acad Sci U S A 102: 9673–9678. 401 

7. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. (2009): 402 

Correspondence of the brain’s functional architecture during activation and rest. Proc Natl 403 

Acad Sci U S A 106: 13040–5. 404 

Jo
urn

al 
Pre-

pro
of



 20 

8. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. (2017): Resting-405 

state connectivity biomarkers define neurophysiological subtypes of depression. Nature 406 

Medicine 23: 28–38. 407 

9. Williams LM (2016): Precision psychiatry: A neural circuit taxonomy for depression and 408 

anxiety. The Lancet Psychiatry 3: 472–480. 409 

10. Kaiser RH, Pizzagalli DA (2015): Large-Scale Network Dysfunction in Major Depressive 410 

Disorder- A Meta-analysis of Resting-State Functional Connectivity. JAMA Psychiatry. 411 

11. Zheng H, Xu L, Xie F, Guo X, Zhang J, Yao L, Wu X (2015): The altered triple networks 412 

interaction in depression under resting state based on graph theory. BioMed Research 413 

International 2015: 9–12. 414 

12. Kaiser RH, Whitfield-Gabrieli S, Dillon DG, Goer F, Beltzer M, Minkel J, et al. (2016): 415 

Dynamic Resting-State Functional Connectivity in Major Depression. 416 

Neuropsychopharmacology 41: 1822–1830. 417 

13. Buckner RL, DiNicola LM (2019): The brain’s default network: updated anatomy, 418 

physiology and evolving insights. Nat Rev Neurosci.  419 

14. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001): A 420 

default mode of brain function. Proceedings of the National Academy of Sciences 98: 676 421 

LP – 682. 422 

15. Sheline YI, Price JL, Yan Z, Mintun MA (2010): Resting-state functional MRI in depression 423 

unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the 424 

National Academy of Sciences 107: 11020 LP – 11025. 425 

Jo
urn

al 
Pre-

pro
of



 21 

16. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, et al. (2009): The 426 

default mode network and self-referential processes in depression. Proceedings of the 427 

National Academy of Sciences 106: 1942 LP – 1947. 428 

17. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, et al. (2016): 429 

Situating the default-mode network along a principal gradient of macroscale cortical 430 

organization. Proceedings of the National Academy of Sciences 113: 12574–12579. 431 

18. Huntenburg JM, Bazin PL, Margulies DS (2018): Large-Scale Gradients in Human Cortical 432 

Organization. Trends in Cognitive Sciences 22: 21–31. 433 

19. Mesulam MM (1990): Large-scale neurocognitive networks and distributed processing for 434 

attention, language, and memory. Annals of Neurology 28: 597–613. 435 

20. Hong S-J, Vos de Wael R, Bethlehem RAI, Lariviere S, Paquola C, Valk SL, et al. (2019): 436 

Atypical functional connectome hierarchy in autism. Nature Communications 10: 1022. 437 

21. Xia M (2022): Connectome gradient dysfunction in major depression and its association with 438 

gene expression profiles and treatment outcomes. Mol Psychiatry 27(3):1384-1393. 439 

22. Wang J, Zhou Y, Ding J, Xiao J (2021): Functional gradient alteration in individuals with 440 

cognitive vulnerability to depression. Journal of Psychiatric Research.  441 

23. Vos de Wael R, Benkarim O, Paquola C, Lariviere S, Royer J, Tavakol S, et al. (2020): 442 

BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and 443 

connectomics datasets. Communications Biology 3.  444 

24. Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. (2011): 445 

The organization of the human cerebral cortex estimated by intrinsic functional 446 

connectivity. J Neurophysiol 106: 1125–1165. 447 

Jo
urn

al 
Pre-

pro
of



 22 

25. Rubinov M, Sporns O (2010): Complex network measures of brain connectivity: Uses and 448 

interpretations. Neuroimage 52: 1059–1069. 449 

26. Eisendrath SJ, Gillung E, Delucchi KL, Zindel V, Nelson JC, Mcinnes LA, et al. (2016): A 450 

Randomized Controlled Trial of Mindfulness-Based Cognitive Therapy for Treatment-451 

Resistant Depression Stuart. Psychother Psychosom 85: 99–110. 452 

27. Ferri J, Eisendrath SJ, Fryer SL, Gillung E, Roach BJ, Mathalon DH (2017): Blunted 453 

amygdala activity is associated with depression severity in treatment-resistant depression. 454 

Cognitive, Affective and Behavioral Neuroscience 17: 1221–1231. 455 

28. First MB, Pincus HA (2002): The DSM-IV Text Revision: Rationale and potential impact on 456 

clinical practice. Psychiatric Services 53.  457 

29. Sackeim HA (2001): The definition and meaning of treatment-resistant depression. Journal 458 

of Clinical Psychiatry, vol. 62. 459 

30. Folstein MF, Folstein SE MP (1975): Mini-mental state. A grading the cognitive state of 460 

patiens for the clinician. J Psychiatr Res 12: 189–198. 461 

31. Rush AJ, Trivedi MH, Ibrahim HM, Carmody TJ, Arnow B, Klein DN, et al. (2003): The 16-462 

item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), 463 

and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major 464 

depression. Biological Psychiatry 54.  465 

32. Nolen-Hoeksema S, Morrow J (1991): A Prospective Study of Depression and Posttraumatic 466 

Stress Symptoms After a Natural Disaster: The 1989 Loma Prieta Earthquake. Journal of 467 

Personality and Social Psychology 61.  468 

33. Baer RA, Smith GT, Hopkins J, Krietemeyer J, Toney L (2006): Using self-report 469 

assessment methods to explore facets of mindfulness. Assessment 13.  470 

Jo
urn

al 
Pre-

pro
of



 23 

34. Spielberger C, Gorsuch R, Lushene R (1970): STAI manual for the state-trait anxiety 471 

inventory. Self-Evaluation Questionnaire. Lushene Consulting Psychologists Press. 472 

35. Segal Z v, Williams JMG, Teasdale JD (2013): Mindfulness-based cognitive therapy for 473 

depression, 2nd ed. Mindfulness-Based Cognitive Therapy for Depression, 2nd Ed. New 474 

York, NY, US: The Guilford Press. 475 

36. MacCoon DG, Imel ZE, Rosenkranz MA, Sheftel JG, Weng HY, Sullivan JC, et al. (2012): 476 

The validation of an active control intervention for Mindfulness Based Stress Reduction 477 

(MBSR). Behaviour Research and Therapy 50.  478 

37. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Ayse I, Erramuzpe A, et al. (2018): 479 

FMRIPrep : a robust preprocessing pipeline for functional MRI. 5: 1–20. 480 

38. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE (2014): 481 

NeuroImage Methods to detect, characterize, and remove motion artifact in resting state 482 

fMRI. Neuroimage 84: 320–341. 483 

39. Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, et al. 484 

(2013): An improved framework for confound regression and filtering for control of motion 485 

artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64: 486 

240–256. 487 

40. Parkes L, Fulcher B, Yücel M, Fornito A (2018): An evaluation of the efficacy, reliability, 488 

and sensitivity of motion correction strategies for resting-state functional MRI. Neuroimage 489 

171: 415–436. 490 

41. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo X-N, Holmes AJ, et al. (2018): Local-491 

Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity 492 

MRI. Cerebral Cortex 28: 3095–3114. 493 

Jo
urn

al 
Pre-

pro
of



 24 

42. Larivière S, Vos de Wael R, Hong S-J, Paquola C, Tavakol S, Lowe AJ, et al. (2020): 494 

Multiscale Structure–Function Gradients in the Neonatal Connectome. Cerebral Cortex 30: 495 

47–58. 496 

43. Paquola C, Vos De Wael R, Wagstyl K, Bethlehem RAI, Hong S-J, Seidlitz J, et al. (2019): 497 

Microstructural and functional gradients are increasingly dissociated in transmodal cortices. 498 

PLOS Biology 17: e3000284. 499 

44. Bethlehem RAI, Paquola C, Seidlitz J, Ronan L, Bernhardt B, Consortium CCAN, Tsvetanov 500 

KA (2020): Dispersion of functional gradients across the adult lifespan. Neuroimage 222.  501 

45. Corbetta M, Shulman GL (2002): Control of Goal-Directed and Stimulus-Driven Attention in 502 

the Brain. Nature Reviews Neuroscience 3: 215–229. 503 

46. Seeley WW (2019): The salience network : a neural system for perceiving and responding to 504 

homeostatic demands. Journal of Neuroscience. 505 

47. Critchley HD, Harrison NA (2013): Visceral Influences on Brain and Behavior. Neuron 77: 506 

624–638. 507 

48. Daws RE, Timmermann C, Giribaldi B, Sexton JD, Wall MB, Erritzoe D, et al. (2022): 508 

Increased global integration in the brain after psilocybin therapy for depression. Nature 509 

Medicine.  510 

49. Yan CG, Chen X, Li L, Castellanos FX, Bai TJ, Bo QJ, et al. (2019): Reduced default mode 511 

network functional connectivity in patients with recurrent major depressive disorder. Proc 512 

Natl Acad Sci USA 116: 9078–9083. 513 

50. Farb NAS, Desormeau P, Anderson AK, Segal Z v. (2022): Static and treatment-responsive 514 

brain biomarkers of depression relapse vulnerability following prophylactic psychotherapy: 515 

Evidence from a randomized control trial. NeuroImage: Clinical 34: 102969. 516 

Jo
urn

al 
Pre-

pro
of



 25 

  517 

  518 

Jo
urn

al 
Pre-

pro
of



 26 

Tables and Legends 519 

 520 

Figure 1. Analytic pipeline. (A) 400 nodes from the Schaefer Atlas, each overlapping with a 521 

specific intrinsic brain network (IBN) (B), were used to derive functional connectivity matrices 522 

using rs-fMRI data of HCs and patients with TRD. (Ca). Individual connectivity matrices (Si) 523 

went through two distinct processing pipelines. To derive cortical connectivity gradients (upper 524 

stream), individual connectivity matrices were transformed to affinity matrices using cosine 525 

similarity (Cb) and Laplacian decomposition was used to derive three primary connectivity 526 

gradients, which combined explained 34.9% of the variance in functional connectivity (Cc). The 527 

position of an individual node belonging to a specific intrinsic brain network (e.g. Network x) was 528 

used to derive a topographical measure of nodal dispersion (Cd), reflecting the average Euclidean 529 

distance in gradient space between a node and all other nodes belonging to the same network. 530 

Individual connectivity matrices were also leveraged to derive topological measures of nodal 531 

degree (lower stream). Connectivity matrices were weighted by binarizing at a connectivity 532 

threshold of 0.35 (Ce). For each node within a network, we assessed the level of degree by counting 533 

the edges of this node to all other nodes within a network and dividing by the total amount of edges 534 

(Cf). CoN = Control Network; DAN = Dorsal Attention Network; DMN = Default Mode Network; 535 

HC = healthy controls; LiN = Limbic Network; SaN = Salience Network; SMN = Sensorimotor 536 

network; TRD = patients with treatment resistant depression; ViN = Visual Network. 537 
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Figure 2. Cortical connectivity gradients. (A) Cortical connectivity gradients of HCs projected 539 

into cortical surface. The three-dimensional scatterplot below shows how individual nodes 540 

distribute along the first three gradients. Colors reflect the loadings of nodes on individual 541 

gradients. For example, the sensorimotor cortex appears purple and regions overlapping with the 542 

DMN appear blue, reflecting that these systems respectively anchor the extremes of Gradient 1. 543 

(B) Scatterplots reflecting how nodes belonging to distinct intrinsic brain networks align along 544 

cortical gradients in HC. (C) Spatial correlation between maps of Gradients 1-3 in HCs and maps 545 

of Gradients 1-3 using publicly available maps of canonical cortical gradients. (D) Cortical 546 

connectivity gradients of patients with TRD aligned to the gradients of HCs following Procrustes 547 

rotation. (E) Scatterplots reflecting how nodes belonging to distinct intrinsic brain networks align 548 

along cortical gradients in patients with TRD. CoN = Control Network; DAN = Dorsal Attention 549 

Network; DMN = Default Mode Network; HC = healthy controls; LiN = Limbic Network; SaN = 550 

Salience Network; SMN = Sensorimotor network; TRD = patients with treatment resistant 551 

depression; ViN = Visual Network. *p<0.005 552 
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Figure 3. Nodal dispersion and nodal degree. (A) Node-wise statistical comparisons between 554 

HCs and TRD, with increases/decreases in TRD shown in cold/warm colors (p<0.05 uncorrected). 555 

(B) Violinplots reflecting topographical differences in within-network nodal dispersion between 556 

patients with TRD (red) and HCs (blue). (C) Violinplots reflecting topological differences in 557 

within-network nodal degree between patients with TRD and HCs. (D) Scatterplots reflecting the 558 

association between within-network nodal degree and within-network nodal dispersion separately 559 

for patients with TRD and HCs. Pearson’s correlation coefficients are reported below the 560 

scatterplots for each group separately, together with associated Fisher r-to-z tests for independent 561 

samples comparing the strength of the correlations across groups. CoN = Control Network; DAN 562 

= Dorsal Attention Network; DMN = Default Mode Network; HC = healthy controls; LiN = 563 

Limbic Network; SaN = Salience Network; SMN = Sensorimotor network; TRD = patients with 564 

treatment resistant depression; ViN = Visual Network. *p<0.05 FDR corrected, +p<0.05 565 

uncorrected 566 

  567 

Jo
urn

al 
Pre-

pro
of



 29 

Figure 4. Between-network nodal dispersion. Between-network nodal distance in (A) HCs and 568 

(B) patients with TRD. (C) Significant reductions in between-network nodal dispersion were found 569 

in patients with TRD, affecting the Sensorimotor and DMN, the Salience and DMN, and the 570 

Control and Dorsal Attention Network. None of these findings survived FDR correction for 571 

multiple comparisons. *p<0.05 uncorrected. CoN = Control Network; DAN = Dorsal Attention 572 

Network; DMN = Default Mode Network; HC = healthy controls; LiN = Limbic Network; SaN = 573 

Salience Network; SMN = Sensorimotor network; TRD = patients with treatment resistant 574 

depression; ViN = Visual Network.  575 
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Figure 5. Nodal dispersion correlates with symptoms of depression. (A) Levels of trait anxiety 576 

(STAI trait total scores) and (B) depression (RSQ22) are significantly higher in patients with TRD 577 

(red violinplots) when compared to HCs (blue violinplots), while levels of (C) mindfulness (FFMQ 578 

total scores) are significantly lower in patients when compared to HCs. (D) Within-network nodal 579 

dispersion of the DMN, CoN, and LiN correlate negatively with trait anxiety and depression and 580 

positively with mindfulness in TRD patients but not in HCs (E). No significant correlations were 581 

found for dispersion of the ViN, suggesting a specific association of clinical measures to higher-582 

order cognitive and limbic networks. Matrix in (F) reflects Fisher r-to-z tests for independent 583 

samples comparing the strength of the correlations across groups. (G) Conversely, within-network 584 

nodal degree of the DMN, CoN, and LiN correlate positively with trait anxiety and depression and 585 

negatively with mindfulness in TRD patients but not in HCs (H). Matrix in (I) reflects Fisher r-to-586 

z tests for independent samples comparing the strength of the correlations across groups. CoN = 587 

Control Network; DMN = Default Mode Network; HC = healthy controls; LiN = Limbic Network; 588 

TRD = patients with treatment resistant depression. ***p<0.0005, **p<0.005, *p<0.05, +p<0.1 589 
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Figure 6. Baseline LiN nodal dispersion predicts change in STAI trait following a 591 

MBCT/HEP intervention. (A) Parameter regression coefficients from multiple regression models 592 

predicting clinical score changes (Baseline – 24 weeks) from baseline within-network nodal 593 

dispersion. (B) Only nodal dispersion of the LiN significantly predicted STAI strait change scores. 594 

CoN = Control Network; DMN = Default Mode Network; HEP = health enhancement program; 595 

LiN = Limbic Network; MBCT = mindfulness-based cognitive therapy. *p<0.05; +p<0.01 596 

 597 
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 599 

 HC 

(n=28) 

TRD 

(n=56) 

T p 

Age in years 45.4 (9.3) 42.9 (9.9) 1.14 0.260 

Female 20 44 0.21& 0.651 

Handedness ambidextrous/left/right 1/2/25 2/5/49 0.08& 0.962 

Education in years 16.9 (2.5) 16.1 (2.1) 1.57 0.123 

Hispanic-Latino 4 4 0.40& 0.529 

Asian/Black/Other/White 1/2/0/25 6/4/1/45 12.38& <0.01 

Mean FD in mm 0.23 (0.10) 0.25 (0.11) -1.01 0.316 

Mean spike occurrence:  

 number of volumes with FD>0.5mm 

7.5 (14.4) 13.4 (18.9) 1.45 0.149 

Age of MDE onset in years - 20.8 (10.1) - - 

Number of MDEs - 3.6 (2.5) - - 

Current onset duration in months - 85.6 (110.5) - - 

Number of trials - 2.9 (1.3) - - 

Concurrent medication at baseline     

Antidepressants - 56 (100.0%) - - 

Mood stabilizers - 8 (14.3%) - - 

Sedatives - 19 (33.9%)   

Stimulants - 13 (23.2%) - - 

Antipsychotics - 1 (20.0%) - - 

Other - 1 (1.8%) - - 
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Clinical questionnaires     

HDRS-17 1.6 (1.3) 17.4 (2.7) -35.5 <0.001 

QIDS-SR16 2.6 (1.4) 14.9 (3.7) -21.6 <0.001 

STAI trait 27.6 (5.8) 60.1 (8.5) -19.6 <0.001 

STAI state 26.5 (7.8) 56.3 (9.8) -14.5 <0.001 

RSQ22 31.8 (9.0) 59.7 (11.0) -12.0 <0.001 

FFMQ 157.2 106.1 12.0 <0.001 

Table 1. Participants’ demographic and clinical characteristics at baseline. Mean and standard 600 

deviation in brackets. &Chi-square test. FD = framewise head displacement; FFMQ = Five Facet 601 

Mindfulness Questionnaire; HDRS-17 = Hamilton Depression Rating Scale; HC = healthy control; 602 

MAOI = monoamine oxidase inhibitors; MDE = major depressive episode; QIDS-SR16 = Quick 603 

Inventory of Depression Symptomatology; RSQ22 = Nolen-Hoeksema's Response Styles 604 

Questionnaire; SNRI = selective and norepinephrine reuptake inhibitors; SRI = selective reuptake 605 

inhibitors; SSRI = selective serotonin reuptake inhibitors; STAI = State-Trait Anxiety Inventory; 606 

TCA = tricyclic antidepressants; TRD = treatment resistant major depression.  607 
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