
Psychophysiology. 2022;00:e14218.     | 1 of 19
https://doi.org/10.1111/psyp.14218

wileyonlinelibrary.com/journal/psyp

Received: 22 January 2022 | Revised: 8 September 2022 | Accepted: 16 September 2022

DOI: 10.1111/psyp.14218  

O R I G I N A L  A R T I C L E

Dynamic autonomic nervous system states arise during 
emotions and manifest in basal physiology

Lorenzo Pasquini1  |   Fatemeh Noohi1 |   Christina R. Veziris1 |   Eena L. Kosik1 |   
Sarah R. Holley2,3 |   Alex Lee1  |   Jesse A. Brown1 |   Ashlin R. K. Roy1 |    
Tiffany E. Chow1 |   Isabel Allen4 |   Howard J. Rosen1 |   Joel H. Kramer1 |    
Bruce L. Miller1 |   Manish Saggar5 |   William W. Seeley1,6 |   Virginia E. Sturm1,3,7

This is an open access article under the terms of the Creative Commons Attribution- NonCommercial License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.

1Memory and Aging Center, 
Department of Neurology, University 
of California, San Francisco, California, 
USA
2Department of Psychology, San 
Francisco State University, California, 
San Francisco, USA
3Department of Psychiatry & Behavioral 
Sciences, University of California, San 
Francisco, California, USA
4Department of Epidemiology & 
Biostatistics, University of California, 
San Francisco, California, USA
5Department of Psychiatry & Behavioral 
Sciences, Stanford University, Stanford, 
California, USA
6Department of Pathology, University 
of California, San Francisco, California, 
USA
7Global Brain Health Institute, Memory 
and Aging Center, University of 
California, San Francisco, California, 
USA

Correspondence
Virginia E. Sturm, Memory and Aging 
Center, Department of Neurology, 
University of California, San Francisco, 
CA, USA.
Email: virginia.sturm@ucsf.edu

Funding information
National Institute on Aging, Grant/
Award Number: K99- AG065457, 
R01AG052496 and R01AG057204

Abstract
The outflow of the autonomic nervous system (ANS) is continuous and dynamic, 
but its functional organization is not well understood. Whether ANS patterns ac-
company emotions, or arise in basal physiology, remain unsettled questions in 
the field. Here, we searched for brief ANS patterns amidst continuous, multi-
channel physiological recordings in 45 healthy older adults. Participants com-
pleted an emotional reactivity task in which they viewed video clips that elicited a 
target emotion (awe, sadness, amusement, disgust, or nurturant love); each video 
clip was preceded by a pre- trial baseline period and followed by a post- trial re-
covery period. Participants also sat quietly for a separate 2- min resting period to 
assess basal physiology. Using principal components analysis and unsupervised 
clustering algorithms to reduce the second- by- second physiological data during 
the emotional reactivity task, we uncovered five ANS states. Each ANS state was 
characterized by a unique constellation of patterned physiological changes that 
differentiated among the trials of the emotional reactivity task. These ANS states 
emerged and dissipated over time, with each instance lasting several seconds on 
average. ANS states with similar structures were also detectable in the resting 
period but were intermittent and of smaller magnitude. Our results offer new 
insights into the functional organization of the ANS. By assembling short- lived, 
patterned changes, the ANS is equipped to generate a wide range of physiological 
states that accompany emotions and that contribute to the architecture of basal 
physiology.
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1  |  INTRODUCTION

For over a century, one of the most contentious areas in 
emotion research has been the role of the autonomic ner-
vous system (ANS). A direct thoroughfare that connects 
brain to body, and body to brain (Levenson,  2014), the 
ANS (together with the somatic nervous system) sup-
ports emotion generation and homeostasis via organized 
sympathetic and parasympathetic nervous system path-
ways (Craig,  2002; Critchley & Harrison,  2013). While 
some maintain the ANS lacks precision (Barrett,  2006a; 
Russell, 2003), turning on and off in an undifferentiated 
fashion during affective states (Cannon, 1927), others as-
sert its contribution is more refined, orchestrating unique 
physiological patterns across the body that distinguish 
among emotions (Damasio & Carvalho, 2013; James, 1884; 
Keltner & Cordaro,  2017; Levenson,  2014). A better un-
derstanding of the functional organization of the ANS 
(i.e., how the ANS might produce predictable yet dynamic 
physiological changes throughout the periphery) will help 
to resolve ongoing disagreements about ANS patterning 
during emotions (Barrett,  2017; Levenson,  2014; Russell 
& Barrett, 1999).

1.1 | ANS patterns and emotions

According to functionalist theories, emotions are 
brief (on the order of seconds), multisystem processes 
that are accompanied by patterned suites of ANS and 
motor changes that shape feelings and motivate actions 
(Adolphs, 2017; Cosmides & Tooby, 2000; Dolan, 2002; 
Ekman,  1992; Gross,  2015; Keltner et al.,  2019; 
Levenson, 2014). In this view, emotions serve adaptive 
functions and reflect time- tested reactions to survival- 
relevant cues (Adolphs, 2017; Cosmides & Tooby, 2000; 
Dolan,  2002; Ekman,  1992; Gross,  2015; Keltner 
et al., 2019; Levenson, 2014). Each emotion, therefore, 
is thought to be characterized by a unique ANS pattern 
that differentiates it from other emotions and that en-
courages certain types of thoughts, feelings, and actions. 
Whereas negative emotions can be important for physi-
cal safety, positive emotions often play central roles in so-
cial relationships (Fredrickson, 1998; Levenson, 2003). 
For example, disgust is a negative emotion that helps to 
keep individuals safe from potential contaminants, and 
sadness signals the value of something that is lost. In 
the family of positive emotions, nurturant love fosters 
enduring interpersonal bonds through feelings of con-
cern, amusement promotes social connection through 
play and humor, and awe inspires attention to the col-
lective by feeling part of something larger than oneself 
(Griskevicius et al., 2010).

Most prior laboratory- based investigations that have 
searched for emotion- specific ANS patterns have reduced 
complex physiological cascades into static “snapshots” 
using change scores. Change scores reflect the differ-
ence between the mean level in a physiological channel 
during an emotion- inducing task and the mean level 
during a baseline period and are a straightforward and 
efficient way of quantifying ANS reactivity. Numerous 
studies that have used change scores have found dissocia-
ble ANS patterns for certain negative and positive emo-
tions (Christie & Friedman,  2004; Ekman et al.,  1983; 
Kragel & LaBar, 2013; Levenson et al., 1990; McGinley & 
Friedman, 2017; Rainville et al., 2006; Shiota et al., 2011; 
Stephens et al.,  2010). Multivariate approaches, which 
look for ANS patterns using change scores across numer-
ous physiological channels at once, were also successful 
in distinguishing among various emotions (Kreibig, 2010; 
Kragel & LaBar, 2013; Kragel & LaBar, 2014a).

Meta- analyses of studies using change scores, however, 
have failed to find robust emotion- specific ANS patterns 
(Behnke et al., 2022; Quigley & Barrett, 2014; Russell, 2003; 
Siegel et al.,  2018). Functionalist theorists often conclude 
that methodological differences account for the inconsistent 
ANS patterns across studies of emotional reactivity. For ex-
ample, studies vary in which emotions they elicited and of 
what intensity, which physiological measures were collected 
and from which body part (Mauss et al., 2005), and which 
type of stimuli were used (i.e., pictures, film clips, music, 
guided imagery, or autobiographical recall) (McGinley & 
Friedman, 2017; Siedlecka & Denson, 2019). By averaging 
physiological activity over an entire trial, change scores also 
treat emotions as if they were sustained, rather than short- 
lived, responses by reducing an ANS signal's rich temporal 
dynamics into a single measure. An alternative explana-
tion for the inconsistent findings across studies, however, 
is that emotions are not characterized by ANS patterns but 
rather are accompanied by inherently variable physiological 
changes that differ across people and contexts. According to 
constructionist theory, the ANS activities that arise during 
emotions are highly flexible, unfolding in different ways in 
each instance of emotion, and largely lacking a predictable 
structure (Barrett,  2017; Siegel et al.,  2018). New analytic 
approaches that search for brief, dynamic ANS patterns 
have the potential to determine whether stereotyped (i.e., 
non- random) physiological changes emerge during emo-
tions when examined on shorter timescales.

1.2 | Functional organization of 
basal physiology

Emotions are processes that unfold over time, but even at 
rest, the outflow of the ANS is continuous and dynamic. 
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An ongoing exchange between sympathetic and parasym-
pathetic pathways shapes physiological activity to meet the 
ever- changing demands of the internal and external mi-
lieus (Berntson et al., 2017). At rest, maintenance of regular 
rhythms is a mainstay of homeostasis, but unexplained var-
iability in basal physiology adds complexity to an otherwise 
steady state (Goldberger et al., 2001; Jacono & Dick, 2011).

Functionalist and constructionist theories have differ-
ent perspectives about the significance of basal physiol-
ogy, but little is known about its functional organization. 
Functionalist theories propose that, at rest, the ANS lacks a 
predictable organization yet creates a complex physiological 
backdrop on which emotions unfold. In this view, emotions 
are considered programs in the nervous system that activate 
when needed (Cosmides & Tooby, 2000), coordinating dis-
parate ANS and motor systems that may not be coordinated 
in basal physiology. According to constructionist theory, in 
contrast, ongoing bodily states are more than just a physio-
logical backdrop and instead play a central role in emotions 
and affective experience. In this perspective, emotions are 
created as people use knowledge to make meaning of the 
internal condition of the body in a given context (Barrett 
et al., 2007; Jackson et al., 2019). The physiological milieu, 
therefore, is thought to shape baseline feelings (e.g., also 
referred to as “mood” or “core affect”) that traverse the 
dimensions of affective space yet are not tethered to pre-
dictable ANS patterns (Russell & Barrett,  1999). Studies 
that investigate whether basal physiology has a functional 
organization are lacking but could help to forge new links 
between the phasic and tonic activities of the ANS.

1.3 | Goals of the present study

Here, we leveraged the rich temporal dynamics of mul-
tichannel physiological recordings to examine the func-
tional organization of the ANS during an emotional 
reactivity task and an undirected resting period. We ob-
tained a broad array of continuous respiratory, cardiovas-
cular, and electrodermal measures that have been utilized 
in numerous prior studies to assess a variety of sympa-
thetic and parasympathetic nervous system activities 
(Sturm et al., 2018). During the emotional reactivity task, 
participants viewed video clips (Sturm et al., 2021), which 
are ideal for evoking and measuring ANS changes over 
time (Dixon & Gross,  2021; Gross,  2015; Scherer,  2009). 
We induced positive and negative emotions (awe, sadness, 
amusement, disgust, or nurturant love) that have sur-
vival relevance (Campos et al., 2013; Ekman et al., 1983; 
Fredrickson, 1998; Keltner & Haidt, 2003; Levenson, 2014; 
Shiota,  2021; Shiota et al.,  2011, 2014, 2017; Sturm 
et al., 2020) and can be reliably evoked with videos and 
images in a laboratory setting (Gross & Levenson, 1995; 

McGinley & Friedman,  2017; Rottenberg et al.,  2007; 
Shiota et al.,  2011; Siedlecka & Denson,  2019). As prior 
studies have found evidence that each of these emotions 
is associated with a distinct physiological profile (Ekman 
et al., 1983; Kreibig, 2010; Shiota et al., 2011), elicitation 
of these emotions provided an appropriate testing ground 
for novel analytic approaches aiming to uncover ANS pat-
terns. Prior to the emotional reactivity task, participants 
sat through a two- minute resting period to assess basal 
physiology. In line with functionalist perspectives, we ex-
pected brief ANS patterns would emerge from the second- 
by- second physiological recordings and distinguish 
among the trials of the emotional reactivity task. We next 
explored whether ANS patterns reminiscent of those that 
arose during the emotional reactivity task were also pre-
sent in the resting period and, thus, suggest a previously 
unrecognized functional organization of basal physiology.

2  |  METHOD

2.1 | Participants

Fifty- nine healthy adults were recruited from the Hillblom 
Aging Network, a longitudinal cohort followed by the 
University of California, San Francisco (UCSF) Memory 
and Aging Center. Participants provided informed consent 
prior to participation, and the study was approved by the 
UCSF Human Research Protection Program. Participants 
underwent a comprehensive multidisciplinary evaluation 
that included assessment of their neurological, neuropsy-
chological, and daily functioning as well as a neuroimaging 
assessment. All participants were cognitively normal and 
free of current or previous neurological conditions and psy-
chiatric disorders. All participants had a Clinical Dementia 
Rating Scale score of 0 (range 0– 3), which indicates intact 
daily functioning (Morris, 1997), and a Mini- Mental State 
Examination score of 28 or higher (range 0– 30), which in-
dicates normal mental status (Folstein et al.,  1975). The 
Geriatric Depression Scale (Yesavage et al.,  1982), which 
assesses mood symptoms over the past 2 weeks, was used 
to screen for depressive symptoms. Race and ethnicity, 
handedness, and years of education were reported by the 
participants. At the time of the emotional assessment (see 
Procedure section), no participants were taking medica-
tions that might affect ANS physiology (i.e., stimulants, 
acetylcholinesterase inhibitors, beta- blockers, or psycho-
tropics). Participants with more than 20% missing data in 
any physiological channel across the emotional reactivity 
task were excluded from our analyses; 14 out of 59 partici-
pants were excluded based on this criterion, which resulted 
in a final sample of 45 participants. The demographic and 
cognitive data for the final sample are presented in Table 1.
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2.2 | Procedure

Participants completed a laboratory- based assessment 
of emotions at the UCSF Center for Psychophysiology 
and Behavior. Participants were seated in a comfortable 
chair in a well- lit experiment room. Sensors were applied 
to obtain continuous measures of physiological activ-
ity (Figure  1a). Participants were recorded with a semi- 
obscured remotely controlled video camera throughout 
the testing session; behavior from the videos was not 
analyzed in the present study. Participants completed a 
battery of tasks designed to assess emotional reactivity, 
empathy, emotion regulation, and resting ANS physiol-
ogy. Only data from the emotional reactivity task and rest-
ing period were included in our analyses.

2.2.1 | Tasks

Emotional reactivity task
Participants completed five “emotion trials” in which they 
viewed emotionally evocative video clips that were approx-
imately 90 s in length (range: 88– 104 s). Each video clip 
was selected to elicit awe, sadness, amusement, disgust, 
or nurturant love, respectively. Piloting in an independent 

sample (n  =  14, 8 females, age range 27– 31 years; see 
Table  S3) and our prior work have shown these video 
clips elicit the target emotions (Sturm et al.,  2021). The 
awe video was from Planet Earth and showed landscapes 
and vistas, the sad video was from 21 Grams and showed a 
mother in a hospital receiving bad news about her family, 
the nurturant love film clip was from Babies and showed 
infants and toddlers crawling and playing with animals, 
the disgust film clip was from YouTu be.com and showed 
ear wax being removed from an ear, and the amusement 
film clip was from YouTu be.com and showed a baby 
laughing while watching someone rip up paper. We chose 
to elicit these negative and positive emotions because 
they can be reliably evoked in a laboratory setting with 
images and videos (Gross & Levenson, 1995; McGinley & 
Friedman, 2017; Rottenberg et al., 2007; Shiota et al., 2011; 
Siedlecka & Denson, 2019), activate various components 
of the sympathetic and parasympathetic nervous systems, 
and have been associated with distinct ANS profiles in 
prior research (Ekman et al., 1983; Kreibig, 2010; Shiota 
et al., 2011).

Each video clip was preceded by a 61- s pre- trial baseline 
in which participants were asked to try to clear their mind 
and followed by a 31- s post- trial recovery period in which 
participants viewed a black “X” on a white screen (herein, 
referred to together as “non- task” periods; Figure  1b). 
This task design allowed participants to alternate between 
periods of resting fixation and periods of positive and neg-
ative emotion elicitation. After viewing each video clip, 
participants answered questions about the video and their 
emotional experience. All questions were presented visu-
ally on the computer monitor and via prerecorded audio 
recordings that they heard through speakers.

Resting period
Prior to the emotional reactivity task, participants sat qui-
etly through a 2- min resting period in which they watched 
a black “X” on a white screen. They were instructed to try 
to clear their mind during the trial.

2.2.2 | Measures

Self- report measures
To ensure that participants had paid attention during they 
task, they were asked, “What happened in this movie?” 
after viewing each video clip and selected their answer 
from multiple choice. Participants also reported their ex-
perience of anger, sadness, disgust, fear, awe/amazement, 
love/affection, amusement/happiness, excitement/enthu-
siasm, embarrassment, pride, and surprise while watch-
ing each video clip on a three- point scale (0 = none, 1 = a 
little, 2 = a lot).

T A B L E  1  Demographic and cognitive data for the final sample

Mean (SD)

Sample size 45

Age (years) 73.6 (4.2)

Sex: Male/Female 13/32

Handedness: Right/Left 42/3

Education (Years) 17.7 (1.8)

Race (Asian/Black/White) 1/1/43

Ethnicity (Hispanic, Latino) 1

Mini- mental state examination (/30) 29.3 (1.0)

Clinical dementia rate scale total (/3) 0.0 (0.0)

Benson figure 10- min recall (/17)*** 10.8 (3.4)

Modified trails (correct lines per minute) ** 38.2 (14.4)

Modified trails errors*** 0.3 (0.7)

Phonemic fluency (# correct in 60 s)** 16.0 (3.9)

Semantic fluency (# correct in 60 s) 21.8 (3.9)

Design fluency correct (# correct in 60 s)** 11.6 (4.6)

Digits backward** 5.2 (2.1)

Benson figure copy (/17)** 14.9 (3.3)

Modified Boston naming test correct (/15)** 13.7 (4.6)

Geriatric depression scale (/30)**** 2.2 (2.7)

Note: For questionnaires, the highest attainable score is shown in the 
parentheses. SD = standard deviation. **completed by 43 out of 45 
participants; *** completed by 42 out of 45 participants; **** completed by 31 
out of 45 participants.
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Physiological recordings
Continuous measures of physiological activity were ob-
tained with Biopac MP150 bioamplifiers and a computer 
equipped with AcqKnowledge software (v4.4, https://
www.biopac.com/) (Sturm et al.,  2018): (I) Inter- beat 

interval (IBI): Electrodes were placed in a bipolar con-
figuration on opposite sides of the participant's chest; the 
heart rate was calculated as the number of R waves from 
the electrocardiogram per minute. (II) Inter- cycle breath 
interval (ICI): A pneumatic bellows- based respiration 

F I G U R E  1  Legend on next page
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transducer was stretched around the thoracic region, and 
the respiration rate was measured as the number of in-
spirations per minute. (III) Respiration depth (RD): The 
point of the maximum inspiration minus the point of 
maximum expiration was determined from respiratory 
tracing. (IV) Finger pulse amplitude (FPA): A photop-
lethysmograph recorded the amplitude of blood volume 
in the finger using a photocell taped to the distal phalanx 
of the index finger of the nondominant hand. (V) Finger 
pulse transit time (FPT): The time interval in milliseconds 
was measured between the R wave of the electrocardio-
gram and the upstroke of the peripheral pulse at the finger 
site, recorded from the distal phalanx of the index finger 
of the nondominant hand. (VI) Skin temperature (ST): 
A thermistor attached to the distal phalanx of the little 
finger of the nondominant hand recorded temperature in 
degrees Fahrenheit. (VII) Skin conductance level (SCL): 
SCL, a measure of sympathetic activity (Critchley, 2002), 
was measured through a constant- voltage device pass-
ing a small voltage between Ag/AgCl Silver 8 mm elec-
trodes (using an electrolyte of sodium chloride) attached 
to the palmar surface of the middle phalanges of the 
ring and index fingers of the non- dominant hand. (VIII) 
Respiratory sinus arrhythmia (RSA): RSA, a measure of 
parasympathetic activity (Bernston et al., 1997), was cal-
culated with the peak- valley approach as the difference 
in msec between the shortest inter- beat interval during 
inspiration and the longest inter- beat interval during 
expiration.

Physiological data were processed using a custom 
pipeline scripted in AcqKnowledge. Briefly, algorithms 
identified and marked the signature components of each 
waveform, and these marks were then visually inspected 
for errors and noise. Outliers in the data were consid-
ered more or less than three standard deviations from the 
mean level during the trial; these periods were interpo-
lated if their duration was three seconds or less and de-
leted if their duration was greater than three seconds. 

Second- by- second averages for each channel were then 
exported for use in subsequent analyses.

2.3 | Statistical analyses

R (https://www.r- proje ct.org/) and MATLAB2020a 
(https://www.mathw orks.com/produ cts/matlab.html) 
were used for the analyses.

2.3.1 | Emotional reactivity task

Self- report measures
Correct responses to the questions regarding each video 
clip's content were scored as 1, and incorrect responses 
were scored as 0. These scores were used to determine 
whether there were any trials in which a participant ob-
tained a score of 0 and, hence, did not understand or re-
call the content of the video. For the emotional experience 
questions, we conducted analyses of variance to deter-
mine whether there was a main effect of emotion trial on 
each type of emotional experience.

Physiological recordings
Incidental missing values were replaced through spline 
interpolation using the imputeTS package in R. Between 
0.2% (IBI) and 5.5% (RSA) of missing data across the 
whole sample was replaced through the interpolation pro-
cedure (Figure S1). The time series of the ANS channels 
were then z- scored within each participant using the scale 
function in R (Figure 1c), which ensured that individual 
differences in ANS dynamics were comparable across par-
ticipants and measures.

Principal component analysis and time series of the principal 
components. For each ANS channel, the standardized 
time series were then concatenated across the sample 

F I G U R E  1  Principal components of ANS activity during the emotional reactivity task. (a) Multichannel recordings of ANS activity 
were obtained in each participant: Inter- beat interval (IBI), respiratory sinus arrhythmia (RSA), finger pulse amplitude (FPA), finger 
pulse transit time (FPT), inter- cycle interval (ICI), respiration depth (RD), skin conductance level (SCL), and skin temperature (ST). Blue 
indicates respiratory; red, cardiovascular; and orange, dermal signals. (b) Continuous recording of ANS activity were obtained throughout 
the emotional reactivity task, during which participants viewed five emotionally evocative videos (awe [awe], sadness [sad], amusement 
[Amu], disgust [dis], and nurturant love [Lov]). Each video was preceded by a pre- trial baseline and followed by a post- trial recovery period 
(together referred to as “non- task” periods) during which they viewed an “X” on the computer monitor. (c) the ANS time series data were z- 
scored in each participant and then concatenated across individuals. (d) A principal component analysis revealed five principal components 
(PCs), which explained 75% of the variance in the ANS time series data during the emotional reactivity task. (e) Radial plots for PC1- 5 show 
each PC's eigenvector loadings. For positive eigenvector loadings, higher values reflect greater IBI (slower heart rate), FPA (larger pulse 
amplitude in the finger), FPT (slower transmission of pulse from heart to finger), SCL (higher electrodermal activity), ST (higher skin 
temperature on the finger), RD (greater respiration depth), ICI (slower respiration rate), and RSA (higher heart rate variability). For negative 
eigenvector loadings, the opposite patterns were true. Radians in ochre represent negative loadings. (f) the time series of each PC (tPC) were 
computed and plotted to illustrate second- by- second fluctuations during the emotional reactivity task.
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(Figure  1c). We then conducted a principal component 
analysis (Hotelling,  1933), a dimensionality reduction 
technique that uncovers latent modes of covariation, 
using the factoextra package in R. The first five principal 
components (PCs) were selected for further analysis. Each 
PC was characterized by a set of eigenvector loadings 
that reflected the contribution of the ANS signals to each 
PC. The time series of each PC (tPC) was calculated by 
multiplying the standardized second- by- second data in 
each ANS channel by its PC loadings and then summing 
the weighted time series of the individual channels. We 
repeated this approach for each of the PCs, which yielded 
five tPCs with distinct temporal dynamics. This temporal 
PCA approach has been widely used in neurogaming and 
electrophysiological studies (Calhoun et al.,  2001; Kato 
et al.,  2015; Shine et al.,  2019; Smith et al.,  2012), since 
it enables to decompose each ANS signal in its distinct 
constituents, each characterized by distinct patterns 
of co- fluctuation. The tPCs reflected the continuous 
fluctuations in each PC's magnitude across the emotional 
reactivity task.

Analysis of variance and multinomial logistic regression. To 
run analyses that were more comparable with prior studies 
of emotional reactivity, we first reduced the tPCs during 
each non- task period and each emotion trial into static 
averages and used analyses of variance and multinomial 
logistic regression analyses to examine whether the mean 
tPC amplitudes differed among the emotion trials. For 
each participant, we computed the average magnitude of 
each tPC during the non- task periods and each emotion 
trial. We conducted five analyses of variance (one for each 
tPC) with post hoc Bonferroni- corrected t- tests (p < .05) to 
assess whether the average tPC magnitudes differed across 
the emotion trials (aov and t.test packages in R). To assess 
whether each emotion trial was characterized by a distinct 
pattern of tPC activity, we performed multinomial logistic 
regression analyses (Engel, 1988) using the R packages nnet 
and caret. In model1, we tested whether the average tPCs 
from each emotion trial predicted the trial in which they 
were acquired (i.e., non- task periods averaged across trials as 
well as the awe, sadness, amusement, disgust, or nurturant 
love trials). In model2, we omitted the non- task periods 
and included only the data from the emotion trials, which 
allowed us to conduct a more stringent test of whether the 
mean tPCs could differentiate among the emotion trials 
alone. A 10- fold cross- validation approach was used to 
derive a confusion matrix for each model, which reflected 
the correct classification of each emotion trial and provided 
measures of sensitivity, specificity, and accuracy.

Low- dimensional manifold. Next, we preserved the 
second- by- second fluctuations of the tPCs and examined 

the group- averaged activity in each tPC during the non- 
task periods and emotion trials. To investigate the trajectory 
of the tPCs within a low- dimensional embedding space 
(Shine et al.,  2019), we created a topological manifold 
(Kato et al.,  2015). Manifolds facilitate the exploration 
of dynamic systems and have been used to uncover 
neural mechanisms of complex human and non- human 
animal behaviors (Kato et al.,  2015; Shine et al.,  2019). 
To compute representative trajectories for the tPCs, we 
created two separate matrices in which the columns stored 
the second- by- second data for each tPC from the non- task 
periods or the emotion trials. Given that the trials in the 
emotional reactivity task differed in length, we used linear 
interpolation (fillmissing function in MATLAB R2020a) 
to derive time series of the same length, matched to the 
duration of the longest trial. In each matrix, we averaged 
across the columns to compute the mean time series of 
each tPC across the non- task periods and the emotion 
trials and then plotted the trajectories into the embedding 
space. We also created another pair of matrices in which 
we removed the non- task periods to inspect the temporal 
dynamics of the tPCs during the emotion trials alone.

K- means clustering and ANS state analyses. We 
performed k- means clustering (kmeans function in 
MATLAB R2020a), an approach that considers each time 
point independently and is agnostic to the temporal order 
of the data (Lloyd,  1982), with 10,000 iterations and 10 
replications on the group- averaged tPCs from the emotion 
trials, which yielded clusters of dynamic ANS activity. The 
optimal number of clusters, or ANS states, was confirmed 
with a silhouette analysis. Each time point (i.e., each 
second of the time series data) was assigned to the nearest 
cluster- centroid— the arithmetic mean of all of the time 
points that belong to that cluster— using Euclidean 
distance. A cross- tabular confusion matrix was used to 
investigate the percentage of seconds of each emotion 
trial that were assigned to each ANS state. The classperf 
function in MATLAB R2020a was used to derive measures 
of classification sensitivity and specificity.

We next examined whether the ANS states found in the 
tPC data averaged across the sample were also evident in 
individual participants. We identified the cluster- centroid 
of each ANS state, which is considered its prototype, and 
assigned every time point in the tPCs of the individual 
participants to the closest ANS state based on Euclidean 
distance. We used each participant's resultant ANS state 
occupancy time series to compute the percentage of time 
points from each emotion trial that were assigned to each 
ANS state, a measure of ANS state fractional occupancy. 
We then conducted a two- way analysis of variance (p < .05) 
to determine whether there were differences in ANS state 
fractional occupancies across the emotion trials (aov 
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8 of 19 |   PASQUINI et al.

package in R). We next conducted multiple linear regres-
sions to investigate whether age, sex, or handedness were 
associated with time spent in a trial- predominant ANS 
state. We also used a two- way analysis of variance with a 
random intercept for participant nested in the factor sig-
nal (p < .05) to compare the amplitude of the physiological 
signals across the ANS states (lmer package in R). We then 
used the ANS state occupancy time series to quantify the 
number of times participants transitioned into the pre-
dominant ANS state in each emotion trial and the average 
duration of each state (i.e., dwell time), in seconds.

We performed additional control analyses in which 
we conducted k- means clustering on the tPCs from the 
emotion trials in individual participants. The ANS states 
that were identified in individual participants were then 
aligned to those found at the group level based on the 
Euclidean distance between the individually generated 
cluster- centroids and the group- level cluster- centroids 
(pdist function in MATLAB R2020a). We again used a two- 
way analysis of variance to determine whether there were 
differences in ANS state fractional occupancies across the 
emotion trials (aov package in R).

Resting period
Principal component analysis and time series of the principal 
components. To preprocess the ANS time series from 
the 2- min resting period, we used the same procedures 
as described above for the emotional reactivity task. We 
then conducted a principal component analysis on the 
standardized ANS time series data from the resting period, 
concatenated across participants. Computing separate 
principal component analyses on two distinct data sets 
can yield similar components that have a different sign or 
order of eigenvector loadings. To identify correspondent 
PCs across the emotional reactivity task and the resting 
period, we used cosine distance (Dc)— which is better 
suited than other distance measures to compare the 
magnitudes of two independent, short vectors— to 
compare the eigenvector loadings of individual PCs. We 
reordered the PCs from the resting period in such a way 
to maximize the similarity with the eigenvector loadings 
of PCs derived from the emotional reactivity task (pdist 
function in MATLAB R2020a). This process also involved 
iteratively assessing the similarity between the eigenvector 
loadings from the emotional reactivity task decomposition 
and the inverse of the eigenvector loadings derived from 
the resting period decomposition. After identifying the 
most similar PCs, we vectorized the eigenvector loading 
matrices and used Pearson's correlation coefficients 
(p < .05; corr function in MATLAB R2020a) to examine 
the correspondence between the PCs derived from the 
resting period and those from the emotional reactivity 
task. We then generated tPCs for the resting period by 

using the rearranged eigenvector loadings derived from 
the principal component analysis of the resting period 
ANS time series.

ANS state extraction. To determine the degree to which 
the ANS states from the resting period resembled those 
from the emotional reactivity task, we computed the 
Euclidean distance between each time point in the tPCs 
from the resting period and the cluster- centroids of the 
ANS states from the emotion trials. Time points close to 
a cluster- centroid (less than one standard deviation from 
the mean distance of every resting period time point to 
any cluster- centroid) were assigned to the nearest ANS 
state. As above, we then computed the ANS state fractional 
occupancy and dwell time for each participant. We used a 
one- way analysis of variance, with Bonferroni- corrected 
post hoc t- tests (p < .05; aov package in R) to compare the 
ANS state fractional occupancies of participants. We again 
used cosine distance to compare the mean magnitude of 
the tPCs in each ANS state during the resting period with 
those during the emotional reactivity task (pdist function in 
MATLAB R2020a). We then performed a three- way analysis 
of variance (p < .05) to assess whether the mean magnitudes 
of the tPCs in each ANS state differed between the resting 
period and the emotional reactivity task (aov package in R). 
For each ANS state, the tPC magnitudes from the resting 
period and the emotional reactivity task were compared 
with two- sample t- tests (p < .05, Bonferroni- corrected for a 
total of 25 pairwise comparisons; t.test package in R).

3  |  RESULTS

3.1 | Emotional reactivity task

3.1.1 | Self- report measures

All participants attended to the video clips (Table S1) and 
reported experiencing the target emotions (Table  S2). 
Whereas participants tended to report experiencing the 
target emotion (i.e., disgust or sadness) for the negative 
emotion trials, they often endorsed the target emotion (i.e., 
awe, amusement, or nurturant love) as well as other types 
of positive emotional experience for the positive emotion 
trials, consistent with prior studies (Shiota et al., 2011).

3.1.2 | PC1 temporal dynamics 
separated the non- task periods from the 
emotion trials

The z- scored ANS activity time series (Figure S2) were con-
catenated across participants, and principal component 
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   | 9 of 19PASQUINI et al.

analysis was used to extract five PCs. Each PC explained 
at least 10% of the total variance, and, together, they ex-
plained 75% (see Figure 1d and Figure S3). The PCs lacked 
one- to- one mappings with the cardiovascular, respiratory, 
and dermal signals and, thus, suggested a more complex 
ANS organization during the emotional reactivity task. 
Activity in some channels, however, loaded more strongly 
on certain PCs than on others: respiratory activity (i.e., 
respiration depth and inter- cycle interval) loaded strongly 
on PC1; cardiovascular activity (i.e., finger pulse ampli-
tude and inter- beat interval) on PC2; dermal activity (i.e., 
skin temperature and skin conductance level) on PC3; car-
diovascular and dermal activity (i.e., finger pulse transit 
time and skin conductance level) on PC4; and inter- beat 
interval and skin conductance level on PC5 (Figure 1e).

The five tPCs had distinct temporal dynamics when ex-
amined on a second- by- second basis (Figure 1f). When we 
reduced the tPCs during each non- task period and each 
emotion trial into static averages, analyses of variance and 
multinomial logistic regression analyses confirmed that 
the mean tPC amplitudes differed among the emotion 
trials (Figure S4a– g). Consistent with prior studies, these 
results suggested there were some reliable differences in 
mean ANS activity among distinct emotions (Figure S4) 
(Ekman et al.,  1983; Kreibig,  2010; Shiota et al.,  2011). 
Although our models reached above- chance classification 
probabilities, we expected more robust ANS differences 
among the emotion trials may be embedded within the 
temporal dynamics of the tPCs.

In our next analyses, we preserved the second- by- 
second fluctuations of the tPCs to investigate whether 
they offered additional insights into the architecture 
of ANS patterning. Examination of the group- averaged 
tPCs suggested that activity in tPC1 aligned with the task 
structure and showed comparable increases during all 
the emotion trials (Figure  2a). The magnitude of tPC1 
was more negative during the non- task periods (i.e., 
reflecting slower, deeper respiration and slower heart 
rate) and more positive during the emotion trial (i.e., 
reflecting faster, shallower respiration and faster heart 
rate; Figure S5). The other tPCs, however, did not show 
a similar time course but instead exhibited more com-
plex fluctuations, especially during the emotion trials 
(Figure 2c– f).

When we modeled the temporal trajectories of the five 
tPCs during the non- task periods and the emotion trials 
in a low- dimensional manifold, the overall trajectory of 
ANS activity in the low- dimensional manifold continued 
to separate the non- task periods from the emotion trials 
(Figure  2b), which confirmed physiological responsivity 
during video viewing (Kato et al., 2015; Shine et al., 2019). 
Consistent with theories that emphasize arousal as a 
central dimension of emotions (Russell,  2003; Siegel 

et al., 2018), some ANS changes (e.g., respiration depth) 
differentiated the emotion trials from the non- task pe-
riods but did not distinguish among the emotion trials 
themselves.

3.1.3 | Specific ANS states were predominant 
during the emotion trials across the group

We next removed the pre- trial baseline and post- trial 
recovery periods to inspect the temporal dynamics of 
the tPCs during the emotion trials alone, a more rig-
orous search for ANS patterning. We plotted the low- 
dimensional tPCs space and labeled each time point by 
the emotion trial in which it was acquired. This plot re-
vealed five dynamic ANS patterns, each aligning with 
a different emotion trial (Figure  3a). We next applied 
unsupervised k- means clustering to the tPCs to confirm 
the presence of distinct ANS patterns during the emo-
tion trials. This technique also uncovered five clusters 
or “ANS states” in the tPCs, a solution that was further 
supported by a silhouette analysis (Figure  S6). When 
plotted in the low- dimensional space (Figure  3b), the 
spatial topography of these ANS states largely mirrored 
that which emerged when the tPC time points were in-
stead labeled with their attendant emotion trial. Indeed, 
there was a predominant ANS state for each emotion 
trial (Figure 3c) that had high levels of sensitivity (0.88) 
and specificity (1.00). In the awe trial, 100% of the time 
points aligned with ANS State 1; in the sadness trial, 
92% aligned with ANS State 2; in the amusement trial, 
78% aligned with ANS State 3; in the disgust trial, 67% 
aligned with ANS State 4 and 33% with ANS State 5; and 
in the nurturant love trial, 87% aligned with ANS State 5. 
We found identical ANS states when we included frame- 
by- frame summary measures of image brightness, image 
contrast, and auditory signals as additional covariates in 
our analyses, which suggested differences in the audio-
visual properties of the emotion videos that did not ac-
count for the physiological differences we found across 
trials (Figure S7).

3.1.4 | Trial- predominant ANS states were 
present at the individual level

As the ANS states were derived from the time series 
data averaged across the sample, we next examined the 
degree to which these states were evident in individual 
participants. A two- way analysis of variance compar-
ing the fractional occupancy scores across the emotion 
trials found a main effect of ANS state, F(4,1100) = 5.1, 
p < .0005, and an interaction between ANS state and 
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10 of 19 |   PASQUINI et al.

F I G U R E  2  Dynamic ANS states emerged from continuous physiological measures. (a) during the emotional reactivity task, the 
amplitude of the time series of principal component 1 (tPC1) fluctuated over time and differentiated pre- trail baseline and post- trial recovery 
periods (“non- task” periods, shown in red) from the emotion trials (“task,” shown in blue). (b) When projected into a low- dimensional 
manifold, the flow of the tPCs within the embedding space (depicted by arrows) separated the non- task periods from the emotion trials. 
Fluctuations in the time series of principal components 2– 5 (tPC2- 5; c– f) during the emotional reactivity task did not differentiate the non- 
task periods from the emotion trials but rather appeared to show trial- specific activity patterns (e.g., during the amusement trial in blue at 
around 500 s, tPC2 displayed a negative amplitude while tPC4 displayed a positive amplitude).
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   | 11 of 19PASQUINI et al.

emotion trial, F(16,1100)  =  13.2, p < .0005. This analy-
sis indicated that, as found at the group level, individual 
participants most often occupied ANS State 1 during the 
awe trial (group average = 43%), ANS State 2 during the 
sadness trial (group average = 30%), ANS State 3 during 

the amusement trial (group average = 45%), ANS State 
4 during the disgust trial (group average = 28%), and, to 
a lesser extent, ANS State 5 during the nurturant love 
trial (group average = 24%; Figure 3d, p < .05 Bonferroni- 
corrected t- tests). Time spent in each of these ANS states 

F I G U R E  3  Legend on next page
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12 of 19 |   PASQUINI et al.

was not associated with age, sex, or handedness (Table S4) 
or with the intensity of participants' self- reported experi-
ence of the associated trial's target emotion (Figure S8). 
As an additional test, we conducted k- means clustering 
on the tPCs; here we limited each analysis to an individ-
ual participant's data. By computing the Euclidean dis-
tance between the cluster- centroids in each participant 
and those derived at the group level, we again assigned 
each second of the tPCs to the corresponding ANS state. 
Like the results conducted across the sample, these anal-
yses indicated that a single ANS state was predominant 
during each emotion trial (Figure S9). Each of the ANS 
states was characterized by a unique physiological pro-
file that included distinct constellations of activity in all 
of the channels (Figure 3e and Table S5).

To investigate whether each emotion trial's predominant 
ANS state was short- lived or long- lasting, we quantified the 
number of times participants transitioned into that state 
during each trial. On average, participants transitioned 5.0 
times into ANS State 1 during the awe trial; 8.0 times into 
ANS State 2 during the sadness trial; 5.7 times into ANS 
State 3 during the amusement trial; 6.8 times into ANS 
State 4 during the disgust trial; and 7.4 times into ANS State 
5 during the nurturant love trial (Figure 3f). We next com-
puted the median duration, in seconds, of these states each 
time they emerged. These analyses revealed the median du-
ration, or dwell time, was 5.3 s for ANS State 1 during the 
awe trial; 2.7 s for ANS State 2 during the sadness trial; 6.0 s 
for ANS State 3 during the amusement trial; 3.5 s for ANS 
State 4 during the disgust trial; and 2.5 s for ANS State 5 
during the nurturant love trial (Figure 3g).

3.2 | Trial- predominant ANS states were 
detectable in basal physiology

Our results suggested the ANS assembles brief, dynamic 
physiological patterns that distinguish among emotions. 
To investigate whether trial- predominant ANS pat-
terns were detectable within resting physiology, we next 

performed a principal component analysis on the stand-
ardized ANS time series data, concatenated across the 
sample, from a 2- min resting period that preceded the 
emotional reactivity task. This analysis found PCs with 
loadings that were similar to those found during the emo-
tional reactivity task (Figure 4a and Figure S10).

As before, we next generated the corresponding tPCs 
and computed the Euclidean distance from each time point 
from the resting period to the cluster- centroids from the 
emotion trials. Here, these distances reflected the similar-
ity between each second of the resting period tPCs and the 
trial- predominant ANS states. We assigned time points near 
a cluster- centroid to the closest ANS state; time points that 
did not align with one of the cluster- centroids (mean across 
participants  =  72%) remained unassigned (Figure  4B, 
Figures  S11 and S12). Participants spent 7%– 57% of the 
resting period in an ANS state that resembled those from 
the emotional reactivity task (Figure 4c and Figure S11). A 
one- way analysis of variance, F(4,220) = 8.1, p < .05, with 
Bonferroni- corrected pairwise t- tests found that, on aver-
age, participants spent more time in ANS State 1 (7.8%) and 
ANS State 3 (6.5%) than in ANS State 2 (4.3%), ANS State 
4 (5.1%), or ANS State 5 (4.2%; Figure 4c). When consider-
ing each ANS state's associated emotion trial, these findings 
suggested that, at rest, participants spent more time in ANS 
states emblematic of awe and amusement than in those of 
sadness, disgust, or nurturant love. In contrast to the emo-
tional reactivity task, where the ANS states lasted several 
seconds on average before dissipating, here their presence 
was intermittent and brief, with a median duration of 1.7 s 
for ANS State 1; 1.3 s for ANS State 2; 1.6 s for ANS State 3; 
1.5 s for ANS State 4; and 1.5 s for ANS State 5 (Figure S11c).

The presence of ANS states at rest that resembled those 
from the emotional reactivity task suggested an organi-
zation to basal physiological outflow that has previously 
gone unrecognized. We conducted additional tests to eval-
uate the degree of similarity between the ANS states un-
covered at rest and those found during the emotion trials. 
Measures of cosine distance (Dc), in which lower values 
indicate higher similarity, confirmed that the ANS states 

F I G U R E  3  Dynamic ANS states emerged from physiological time series data. The second- by- second tPC data from the emotion trials 
(omitting non- task periods) were plotted in the low- dimensional space. There was a remarkable similarity between the spatial topography of 
the plots in which each time point was color- coded by (a) the emotion trial in which it was acquired or (b) its assigned ANS state following 
k- means clustering. (c) a confusion matrix revealed that during each emotion trial, there was a single predominant ANS state (except for 
the disgust trial, which had two predominant ANS states), as indicated by the percentage of tPC time points during each trial that aligned 
with each ANS state (Sens = sensitivity; spec = specificity). (d) To confirm that the group- level results were consistent with patterns found 
in individuals, we assigned time points in the tPCs of the individual participants to the closest cluster centroid and computed fractional 
occupancy scores for each ANS state in each emotion trial, as shown in the line- plots with associated standard error bars. As in the group- 
level analysis, individual participants tended to occupy a predominant ANS state during each emotion trial, and the state that they occupied 
in each trial was similar across individuals. (e) Line- plots and associated standard error bars display the link between ANS states and 
the physiological channels that contributed to the original PCs. During each emotion trial, (f) participants transitioned in and out of the 
predominant ANS state, (g) and their dwell time in each ANS state was 2– 6 s on average.
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   | 13 of 19PASQUINI et al.

derived from the resting period had tPC profiles that were 
similar to those from the emotion trials (Dc State 1 = 0.04, 
State 2 = 0.09, State 3 = 0.03, State 4 = 0.06, State 5 = 0.03, 
Figure  4d– h). A three- way analysis of variance with 
Bonferroni- corrected pairwise t- tests (p < .05) comparing 

the tPC magnitudes of the ANS states from the resting pe-
riod with those from the emotion trials also found a main 
effect of condition (resting period versus emotion trials), 
F(1,112,875) = 2.6, p < .05 (Figure 4d– h). Taken together, 
these results indicated that the ANS states from the resting 

F I G U R E  4  Legend on next page
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14 of 19 |   PASQUINI et al.

period had a similar composition to those from the emo-
tion trials but, on average, were of a lower magnitude.

3.3 | Post hoc power analysis

We conducted a post hoc power analysis, based on es-
tablished methods (Lenth,  2007), based on the two- way 
analysis of variance of the individual fractional occupancy 
scores across the emotion trials. We entered the following 
parameters, F(4,1100) = 5.1, where four was the degrees of 
freedom for the five emotion trials, 1100 was the degrees of 
freedom for the number of time points across the trials, and 
5.1 was the F value from the two- way analysis of variance of 
the individual fractional occupancy scores across the emo-
tion trials. For a sample size of 45 and an alpha level of 0.05, 
the power of this analysis was 0.95, which suggests we had 
high power to detect the effects of interest in our study.

4  |  DISCUSSION

The present study expands current models of the func-
tional architecture of the ANS and helps to elucidate its 
role in emotion generation. We took a novel approach 
to the dimensionality reduction of multichannel ANS 
recordings and, by harnessing the moment- to- moment 
fluctuations in physiological outflow across the sample, 
uncovered five ANS states during an emotional reactiv-
ity task. Each ANS state was comprised of a unique set of 
physiological patterns that distinguished among the emo-
tion trials. In individual participants, the duration of each 
ANS state was brief, lasting for several seconds before dis-
sipating or changing in structure. Even the predominant 
ANS states in each trial were fluid, coming and going and 
allowing other states to unfold while participants watched 
the emotion- inducing videos. Remarkably, ANS states 
with a similar intrinsic functional organization were also 
present in basal physiology, though their presence was in-
termittent and their magnitude, less intense.

4.1 | Dynamic ANS states distinguished 
among the emotion trials

Consistent with functionalist theories, our results suggest 
emotions are accompanied by ANS patterns— coordinated 
bursts of physiological activity that are the products of or-
ganized sympathetic and parasympathetic nervous sys-
tem pathways (Adolphs, 2017; Ekman, 1992; Gross, 2015). 
Unlike prior studies that used change scores to quantify 
differences between ANS activity during an emotion- 
inducing task and a pre- trial baseline, thereby reducing 
the rich temporal dynamics of physiological activity into 
a single measure, we leveraged the second- by- second 
variability in the tPCs to search for ANS patterns during 
the emotion trials. The five ANS states that distinguished 
among the emotion trials were not evident in the time 
series of any one PC alone, but emerged when we incor-
porated multiple tPCs in the unsupervised clustering al-
gorithms. When each tPC was examined on its own, only 
activity in tPC1 aligned with the task structure, increasing 
during the emotion trials and decreasing during the non- 
task periods, a pattern that may reflect general elevations 
in arousal during emotions versus rest (Russell,  1980, 
2003). The other tPCs, however, exhibited more complex 
fluctuations that were less yoked to trial onset and offset.

Our analytic approach allowed ANS patterns to emerge 
as short- lived, rather than sustained, configurations at any 
time (and during any trial) of the emotional reactivity task. 
Each video clip was selected to elicit a target emotion, but 
even within a single video, ongoing changes in lighting, 
music, and dialogue as well as variation in characters' fa-
cial expressions, voices, and movements might elicit differ-
ent emotions (or emotions of different intensities) as plots 
unfold, tensions mount, and resolutions surface. Consistent 
with the dynamic nature of the video clips, the ANS states 
that we detected were fleeting, lasting 2 to 6 s on average, 
and dynamic, assembling and disassembling multiple times 
per emotion trial. The ANS states could have emerged at 
any point during the emotional reactivity task, but analyses 
conducted across the group and in individual participants 

F I G U R E  4  Trial- predominant ANS states were detectable in resting physiology. (a) We performed a principal component analysis on 
the ANS recordings acquired during the two- minute resting period preceding the emotional reactivity task. Measures of cosine distance (Dc) 
confirmed the principal components (PCs) from the resting period (“rest,” red lines) resembled those from the emotional reactivity task 
(“task,” blue lines). (b) To illustrate the spatial topography of resting ANS activity in the low- dimensional space, the projected time series of 
the principal components (tPCs) are shown for a representative participant. Time points from the resting period that were assigned to one 
of the five ANS states from the emotional reactivity task are color- coded as in Figure 2d; time points greater than one standard deviation 
from the mean distance of a cluster- centroid were classified as unknown states. (c) Fractional occupancy scores reflect the percentage of the 
resting period that participants spent in ANS states that aligned with those from the emotional reactivity task. During the resting period, 
participants spent the greatest percentage of time in ANS states 1 and 3, which were predominant during the awe and amusement trials. 
Bars reflect p < .05, Bonferroni- corrected t- tests. (d– h) Line- plots with jitter depicting the averaged magnitude of the tPCs, which show 
a high degree of similarity between the mean tPC activity during the ANS states during the resting period (red lines) and the emotional 
reactivity task (blue lines), as measured by Dc; *** p < .05, Bonferroni- corrected t- tests.
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indicated that each ANS state arose more often in one emo-
tion trial than in others. These results suggest that predict-
able, non- random physiological changes arose across the 
participants as they viewed the same set of evocative stim-
uli. As we took a novel analytic approach to examining ANS 
changes during emotions, it is difficult to make direct com-
parisons between the physiological activities that character-
ized each ANS state in the present study and those found in 
prior investigations. Our results, however, are largely con-
sistent with previous research that has investigated the ANS 
specificity of different emotions. ANS State 3 in our study, 
for example, was predominant during the amusement trial 
and was characterized primarily by faster heart rate (shorter 
inter- beat interval), faster respiration rate (shorter inter- 
cycle interval), higher skin conductance level, and lower 
respiratory sinus arrhythmia. Apart from respiratory sinus 
arrhythmia, all of the other channels responded in ways 
that were consistent with those found in most previous 
studies using change scores (Table S5). While there is some 
variability between the physiological patterns that were pre-
dominant during each emotion trial in our study and those 
detected in prior research, additional studies are needed to 
determine whether some of these differences reflect the du-
ration over which physiological changes were measured or 
the varying content in the stimuli themselves.

The goal of the present study was not to define each 
emotion's hallmark ANS pattern, and it seems improbable 
that we discovered the singular physiological fingerprint 
of the target emotions. The ANS states that differenti-
ated among the emotion trials here likely represent one 
possible manifestation— rather than the only manifesta-
tion— of the ANS changes that arise during each emotion. 
As emotions (Cowen & Keltner, 2021; Siegel et al., 2018), 
different stimuli may elicit related yet distinct variations of 
the ANS patterns that we found with this set of video clips. 
Other video clips that elicit amusement, for example, may 
evoke ANS states that vary somewhat in their composition 
but that resemble each other more than ANS states that 
arise during video clips that elicit sadness. The physiolog-
ical changes that arise in response to different emotion- 
inducing video clips are likely meaningful and reflect the 
dynamic content of the stimuli and the ongoing apprais-
als of the viewer (Barrett,  2006b; Siegel et al.,  2018). As 
the same ANS states emerged across participants in the 
present study, however, our results suggest the physiolog-
ical patterns that unfold in response to a specific set of 
evocative video clips are not random. Although additional 
studies are needed to determine whether ANS states that 
resemble those we detected in our study also emerge in 
response to different video clips or different types of af-
fective stimuli, our results suggest hardwired ANS pat-
terns emerge across individuals who are viewing the same 
emotion- inducing stimuli.

4.2 | Dynamic ANS states were present 
in basal physiology

The intrinsic organization of basal physiology is not 
well understood, but functionalist and constructionist 
theories have differing views about its role in emotions 
and emotional experience. According to functionalist 
theories, emotions disrupt homeostasis and organize ac-
tivities across the ANS (and between the ANS and other 
systems) that may be uncoordinated at rest (Cosmides & 
Tooby,  2000; Levenson,  2003, 2014). In this view, basal 
physiology is the backdrop on which emotions unfold that 
may lack its own functional organization. According to 
constructionist theory, in contrast, basal physiology plays 
a central role in shaping ongoing affective experience 
(Russell, 2003), but whether it has an intrinsic architec-
ture that influences these subjective feelings is unknown.

Our results suggest that, within the relative quies-
cence of basal physiology, there are fleeting ANS pat-
terns that resemble those seen during emotions. The 
magnitude of the ANS changes that occurred during the 
resting period was less intense than of the ANS states 
that occurred during the emotional reactivity task, and 
their presence was intermittent, with many seconds of 
the resting period not aligning with an ANS state seen 
during video- viewing. Many unanswered questions re-
main regarding the significance of these ANS states in 
basal physiology. For example, whether these transient 
ANS states reflect “flickers” of emotions that color mo-
mentary, or even more enduring, subjective experiences 
or suggest a “readiness” property of the ANS that pre-
pares the organism to react to self- relevant stimuli in pre-
dictable ways are questions that warrant future research. 
Additional studies are also needed to determine whether 
the presence of emotion- relevant ANS patterns in basal 
physiology relates to other domains including subjective 
experience, facial behavior, and neural activity.

By forging links between physiological activity during 
an emotional reactivity task and basal physiology, the 
present study offers new insights into the functional or-
ganization of the ANS. Our findings in the ANS parallel 
results from studies of the central nervous system (Deco 
et al.,  2008; Fox et al.,  2005; Lurie et al.,  2020; Smith 
et al., 2009). Neuroimaging studies have shown that task- 
free (“resting state”) functional connectivity patterns mir-
ror task- based neural activation patterns, a finding that 
highlights the robust functional organization of brain net-
works across participants and conditions (Fox et al., 2005; 
Smith et al., 2009). Here, we found the ANS patterns that 
arose during the emotional reactivity task were also detect-
able in a task- free resting period that assessed basal phys-
iology. Our results suggest that the ANS, like the brain, 
generates similar activity patterns across task- based and 
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task- free contexts. The ANS patterns that we found during 
emotions and rest are likely the products of distributed 
brain systems (Kragel et al., 2016; Kragel & LaBar, 2014b; 
Lettieri et al., 2019), and how the brain and the ANS in-
teract over time during emotion generation will be an im-
portant question for future studies.

4.3 | Limitations

There are important limitations to our study that should 
be considered. First, we used short video clips, presented 
in the same order, to elicit five target emotions and asso-
ciated ANS changes. Our analytic approach was agnos-
tic to the order of the video clip presentation. Although 
the tPCs included in the analyses did not appear to drift 
or to exhibit tonic changes over time, we cannot rule out 
the possibility that order effects or other factors related 
to the study design (e.g., participant fatigue across the 
task) influenced our findings. The ANS states, there-
fore, could emerge at any time— during any trial— of 
the emotional reactivity task, regardless of which emo-
tion that trial was intended to elicit. Despite this flex-
ibility, the ANS states that we detected still clustered in 
certain emotion trials more than others. Future studies 
that search for ANS patterns in response to emotion- 
inducing stimuli that are presented in a randomized 
order will be needed to address this question in more 
detail, however.

Second, our sample was comprised of healthy older 
adults, most of whom were highly educated and self- 
identified as non- Hispanic White. To rule out the presence 
of an underlying neurodegenerative disease or psychiatric 
illness, all participants underwent extensive neurological, 
neuropsychological, functional, and neuroimaging as-
sessments and were determined to be neurologically and 
psychiatrically healthy by a multidisciplinary diagnostic 
team. While it is possible that healthy older adults may be 
a powerful population in whom to investigate emotional 
reactivity because they have had a lifetime to develop and 
refine their emotional responses, future studies that inves-
tigate ANS states in younger and more diverse populations 
will be needed to determine whether there are any age-  or 
ethnicity- related differences in physiological patterning 
during emotions.

Third, we did not find associations between the 
amount of time participants spent in the ANS states and 
their self- reported emotional experience. Our experien-
tial data were based on a three- point scale, and partici-
pants only reported on their overall experience of specific 
emotions at the end of each trial. These limitations 
likely hindered our ability to find associations between 
ANS activity and subjective feelings. How basal ANS 

physiology contributes to mood or core affect is unknown 
(Russell, 2003), but studies that obtain more fine- grained 
measures of subjective experience will be needed to map 
the complex associations between underlying ANS states 
and self- reported feelings. As there are individual differ-
ences in how people use language to express their feel-
ings (Barrett et al., 2007; Jackson et al., 2019), it is likely 
that verbal emotion labels will not exhibit a one- to- one 
mapping with an underlying ANS state, an important 
topic for future investigation. Consistent with prior work 
(Shiota et al.,  2011), participants in the present study 
were more selective in their endorsement of the target 
negative emotions than of the target positive emotions 
during the emotional reactivity task. Whether these re-
porting differences reflect greater differentiation among 
ANS states that accompany negative feelings and greater 
overlap among the ANS states that accompany positive 
feelings is unknown but could be explored in additional 
research.

5  |  CONCLUSIONS

From the spontaneous firing rates of neurons (Deco 
et al.,  2008) to the intrinsic connectivity of distributed 
brain networks (Lurie et al., 2020), the dynamic proper-
ties of physiological systems are critical for understand-
ing complex functions. The ANS is also dynamic, yet its 
functional organization is poorly understood. The present 
study expands current models of the functional architec-
ture of ANS physiology. Our work offers novel insights 
into how the ANS produces brief physiological patterns 
during emotions and rest and highlights the ways in 
which the ANS creates both stability and flexibility in its 
continuous outflow.
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