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ABSTRACT
Computational models are crucial in understanding brain function.
Their architecture is designed to replicate known brain structures,
and the behavior that emerges is then compared to observed fMRI
and other imaging techniques. As the models become more com-
plex with more parameters, they can explain more of the observed
phenomena, and may eventually be used for diagnosis and design
of treatments of brain disorders. However, those parameters need
to be carefully optimized for the models to work, which becomes in-
tractable as the models grow. In this preliminary work, CMA-ES has
been configured to optimize continuous parameters of a functional
connectivity model, resulting in a better fit to empirical data than
manually selected parameters in all trial runs. This approach will be
combined with other EC techniques to optimize other parameters.
The techniques will be scaled up to more detailed structural and
functional data and local parameters.
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1 INTRODUCTION
Brains have evolved into the most complex natural system, con-
taining billions of neurons as nodes and trillions of synapses as
connections. However, even with such complexity, the patterns
of activity over space and time are not random, even at cognitive
rest. Previous empirical studies have shown that the functional con-
nectivity (FC), which is the correlation of dynamic neural activity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326826

over space between regions, is related to the structural connec-
tivity (SC), which is the strength of anatomical circuitry between
regions [3]. Accurate models that simulate FC from known SC can
then be matched to individual patients, and then used to diagnose
pathologies and design treatments, such as Transcranial Magnetic
Stimulation (TMS) protocols [1].

Neural activity models, while a simplification of the much more
complex natural system, still have to be large and complex. Their
parameters determine how it functions, defining values like the
time constants of the interactions. Given that only a handful of
parameters can be optimized manually, automated methods of op-
timization are crucial. Evolutionary computation (EC) techniques
are well suited for this in large, high-dimensional, and deceptive
search spaces, even with 2270 states and 1B variables [2, 6, 9]. They
find solutions based on high-level fitness, such as how well the
model FC matches a patient FC, even when gradient ascent and
other standard techniques cannot be used.

The Dynamic Mean Field (DMF) model separates the cortical
surface into local function-based areas, approximates the activity in
each region as a simplification of a spiking model using a system of
nonlinear stochastic linear equations, then calculates the FC from
pairwise correlations of the dynamic activity time series per region
[3]. The system of equations used for modeling activity are:

dSi (t)
dt

= −Si
τs
+ (1 − Si )γH (xi ) + σvi (t) (1)

H (xi ) =
axi − b

1 − exp(−d(axi − b)) (2)

xi = w JN Si +G Jn
∑
j
Ci jSj + I0. (3)

In these equations, Si is the synaptic gating variable for region i
and is correlated with the activity in that region. τs and γ denote
kinetic factors both in seconds. σ is the noise amplitude of vi (t),
which is Gaussian additive noise. H (xi ) denotes the population
firing rate for region i . a,b, and d are constants in newtons per
Coulomb, Hertz, and seconds, respectively.w is the local excitatory
recurrence. JN is the synaptic coupling factor in Nanoamperes. G
is the coupling strength, and is the only value varied by Deco et al.
Ci j is the connectivity between the ith and jth regions from the SC
matrix derived previously. I0 is the overall effective external output.

DMF was previously shown to achieve a correlation of up to
0.46 with empirical resting state brain activity recorded by fMRI.
In order to get this result, the global continuous model parameters,
only loosely based on average physical properties, had to be hand-
selected. Their interactions are nonlinear, so there is no gradient,
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and complete exhaustive search is too inefficient. As a result, ex-
haustive search has only been applied to a single such parameter
in previous studies.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
is a well-known EC optimization method in continuous spaces[5].
In CMA-ES, the population is described by a covariance matrix for a
multi-variate normal distribution. Individuals in each generation are
sampled from this distribution, and their resulting fitnesses are used
to adapt the covariance matrix toward more successful individuals
before selecting the next generation of individuals. By adapting the
full covariance matrix, all pairwise dependencies between variables
are considered. CMA-ES is therefore a good match with the multi-
dimensional continuous parameter optimization problem of DMF,
where fitness is the correlation coefficient of the model-generated
FC to the empirically measured FC.

2 METHODS
CMA-ES was applied to evolve nine global parameters of the DMF
model: a,b,d,γ ,τ ,w, JN , I0, and G. Because these parameters are
based on physical approximations and have different units and
upper and lower bounds, they were each normalized. The initial
mean for each parameter was set to its respective value for the
best set of parameters found previously. A sigmoid was used to
increase sensitivity of the parameter values to changes around their
previous best value. A unique sigmoid normalization function for
each parameter allowed the normalized value of all parameters be
centered on a mean of 0 and a range of [-10,10].

Most default CMA-ES hyperparameters, including population
size and weighting scheme, were used for this application. In the
default configuration, these are computed based on the upper and
lower bounds of the normalized values. This resulted in a population
size of 110 individuals per generation. The only adjusted parameter
was the initial step size, whichwas reduced by 2 orders ofmagnitude
to 0.003 times the range of possible parameter values.

The fitness function to maximize was the correlation coefficient
of the model-generated FC to previously empirically measured FC.
The governing equations of the model are listed above as Equations
(1)-(3). These equations are simulated for all 66 brain areas using the
individuals denormalized parameters, empirically measures struc-
tural connectivity matrix. This is computed using Euler’s method
for 100000 time steps, with 1 ms per time step and 10 intermediate
steps between each time step for downsampling, to be consistent
with previous model studies. The resulting modeled activity time
series are computed into a functional connectivity matrix by taking
all pairwise correlations. This is repeated 10 times, and the resulting
functional connectivity matrices are averaged and denormalized.
The result is then correlated with the denormalized empirical func-
tional connectivity matrix used in the previous study to yield a
single fitness value of the individual.

Since the DMF model is non-deterministic due to the noise term
in Equation (1), the fitness of the previous best set and the fitness
of the best set found in each trial run were all measured 100 times
each so they could be tested for statistically significant difference.

Figure 1: CMA-ES trial results. The best fitness seen after
each generation of CMA-ES for each trial is plotted against
the mean fitnesses of the previous best set and our best set
found. The 95% confidence interval for the true interval of
each set is shown. All four trials of CMA-ES found a param-
eter set that has a significantly better fitness than the previ-
ous best set.

3 RESULTS
Four trial runs of the CMA-ES algorithm were run. The CMA-ES
algorithm was able to find a statistically significantly better set
of parameters in all of these trial runs of the algorithm. The best
fitness seen so far for each generation for each trial is shown in
Figure 1. The parameter set yielding the best fitness in each trial is
shown in Table 1.

4 DISCUSSION
The results from the preliminary experiments show that the EC
optimization approach is feasible and potentially powerful beyond
human design. Following experiments will focus on developing the
methods that make it possible to scale up to full computational and
scientific power.

CMA-ES is a stochastic algorithm, due to the random sampling
occurring in every generation. Thus, different runs of the algo-
rithm may result in different local optima being discovered. The
distribution of optima will be further investigated.

The fitness function used is also stochastic. Evaluating each
individual more to get a more confident measure of the true fitness
is more computationally expensive, but will allow the individuals
in each generation to be more accurately assessed.

Efficiency is a crucial factor. The original code for evaluating the
model was previously written in MATLAB. Evaluating a single indi-
vidual is completed on a time scale of minutes with no optimization
or parallelization. Thus, the initial trials, which require 110 fitness
evaluations per generation ran on a scale of days. This algorithm
is a good candidate for increased efficiency via parallelization, as
evaluating individuals within a population are independent calcu-
lations, as are the trials within a single fitness evaluation. Each
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Table 1: Fitness and parameter values of previous best parameter set and resulting best parameter set of all trials of CMA-ES.

Parameter Set Fitness Parameters
a b d γ τ w JN I0 G

Previous Best .4647 ±.0114 270.0 108.0 .154 .641 100.0 .6 .2609 .33 2.4
CMA-ES: Trial 1 Best .5205 ±.0102 225.0 107.3 .1255 .5329 91.01 .5233 .2736 .3641 3.153
CMA-ES: Trial 2 Best .5255 ±.0093 139.5 63.44 .1252 .6654 119.4 .6224 .2616 .2629 4.278
CMA-ES: Trial 3 Best .5329 ±.0105 67.60 14.45 .1623 .3498 60.24 .2458 .4609 .1485 7.537
CMA-ES: Trial 4 Best .5321 ±.0097 167.7 73.94 .0367 .1792 50.68 .0006 .4467 .2738 9.496

individual has 10 functional connectivity matrices computed, so
another potential speed up would be to evaluate the initial matrices
to determine the likelihood that individual will have a high fitness
value, so only the promising individuals are fully evaluated. An-
other potential speed up is to build a look-up table or surrogate
model, such as a neural network, of past fitness evaluations. Both
of these approaches would use past fitnesses to decrease CMA-ES
time at the cost of additional memory and/or offline computation
time.

The preliminary experiment was based on the default config-
uration of CMA-ES. The next step is to configure it for the brain
model optimization specifically. This work includes adjusting the
initial standard deviation, step size, sampling method, stochastic
fitness evaluation, and other hyperparameters, as well as optimiz-
ing groups of interacting parameters in an incremental evolution
process [4].

While the DMFmodel is a good initial target, the next generation
of models for predicting FC from SC is still in development [8]. They
are based on improving the quality of the SC data and making the
empirical FC used for fitness testing more accurate. These models
are expected to be more powerful especially when scaled in size
and complexity by allowing different parameter settings for each
individual region, and allowing them to change over time. In turn,
such scaling is possible only through automated methods, leading
to essential synergy of the two streams of research.

The CMA-ES algorithm is designed to only evolve continuous
parameters. However, some of the parameters of the DMF model
and similar brain models are discrete or categorical, which require
a different approach. For instance, Estimation of Distribution Al-
gorithms (EDAs) use Bayesian networks (instead of a covariance
matrix) to capture dependencies between categorical variables [7].
The second step is thus to develop a new EC method, possibly a hy-
brid of CMA-ES and an EDA, to optimize solutions in heterogeneous
spaces.

The ability to map SC to FC accurately and in a larger scale is an
important stepping stone to addressing larger questions in brain
science. In particular, such models can be fit to individual patient’s
imaging data to diagnose pathologies. It may then be possible to
predict response to treatment protocols such as TMS and optimize
them automatically.

5 CONCLUSION
The presented work provides a basis for utilizing evolutionary com-
putation to optimize neural activity models. Statistically significant
optimization has already been achieved with a relatively simple

approach. With the discussed directions for future work, the opti-
mization potential should continue to increase. This will further our
understanding of the human brain and bring the field of neurology
closer to personalized medicine.
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