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Abstract

The human brain is a complex system with high metabolic demands and extensive connectivity that
requires control to balance energy consumption and functional efficiency over time. How this control
is manifested on a whole-brain scale is largely unexplored, particularly what the associated costs are.
Using network control theory, here we introduce a novel concept, time-averaged control energy (TCE),
to quantify the cost of controlling human brain dynamics at rest, as measured from functional and
diffusion MRI. Importantly, TCE spatially correlates with oxygen metabolism measures from positron
emission tomography, providing insight into the bioenergetic footing of resting state control. Examin-
ing the temporal dimension of control costs, we find that brain state transitions along a hierarchical
axis from sensory to association areas are more efficient in terms of control costs and more frequent
within hierarchical groups than between. This inverse correlation between temporal control costs and
state visits suggests a mechanism for maintaining functional diversity while minimizing energy expen-
diture. By unpacking the temporal dimension of control costs, we contribute to the neuroscientific
understanding of how the brain governs its functionality while managing energy expenses.

INTRODUCTION

The intricate nature of the human brain, character-
ized by its extensive connectivity [5, 10, 81] and cor-
respondingly high metabolic demands [58, 65], has led
to the assumption that its inherent organization repre-
sents a delicate balance between energy consumption
and functional efficiency [70]. This notion underscores
the role of the nervous system as a regulatory entity
[27], orchestrating its functions to fulfill cognitive de-
mands while simultaneously managing energy-related
constraints. While prior research has shed light on how
the brain manages its energy expenditures at a cellu-
lar level [28, 43, 58], the broader exploration of how
these mechanisms translate to the regulation of func-
tional costs at a whole-brain scale remains relatively un-
charted.

Drawing inspiration from engineering principles, net-
work control theory (NCT) offers a novel perspective on
this problem by conceptualizing the brain as a networked
control system in order to explain its dynamics [33]. In
its most basic form, NCT considers brain dynamics as
a composite outcome of a region’s connectivity profile
and the necessary control inputs to guide neural activ-
ity toward a desired state [33, 39, 60] (Fig. 1a). The
former aspect delves into the constant anatomical inter-
actions between various brain regions, while the latter
presents an adaptable measure to optimally transition
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between states within the confines of energy constraints
(Fig. 1b). These constraints are quantified as control en-
ergy, which measures the costs entailed in controlling the
brain across diverse states (Fig. 1c).

Control energy has been shown to be a powerful tool
in various domains of neuroscience, providing an expla-
nation of how the enhancement of executive functions
is supported by structural changes across development
[17], explaining the effects of psychedelics on brain dy-
namics [71], or predicting cortical responses to electri-
cal stimulation [79]. Nevertheless, studies employing
NCT traditionally collapse the temporal dimension of
control energy, focusing solely on the control costs be-
tween different states, without accounting for the tem-
poral organization of these states. Furthermore, control
energy remains a purely statistical notion [78], dissoci-
ated from the actual energetic currency employed by the
brain (e.g., glucose and oxygen metabolism), with only
recent efforts attempting to establish a connection be-
tween control costs and metabolism by showing that rel-
ative hemispheric differences in glucose uptake are mir-
rored by differences in control energy for temporal lobe
epilepsy patients [36].

Despite these advances, the costs associated with con-
trolling neurotypical resting state activity as well as their
energetic signature remain elusive. In light of these
considerations, we propose a novel framework to ex-
amine the expenses incurred in regulating resting state
dynamics, i.e., activity over time. Building upon the
findings of previous reports [36], we further investi-
gate whether theoretically derived control costs mani-
fest in tangible biological metrics of energy expenditure
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Figure 1. Network control theory | (a) The brain as a network of connected regions fluctuates through different modes of activity
across time. We can model these transitions throughout time using network control theory. Network control theory is a framework
that uses information about the anatomical connections in the brain, which are fixed, and regional control inputs, which are
optimised, as bases to model the temporal evolution of brain activity (highlighted by the changing node color patterns on the
right). In other words, the changes in brain activity of a particular region are modelled as depending on its connectivity profile and
an "activation" that spreads out along such profile, but also spreads in from other regions. Such activation is referred to control
input and is fitted to represent an optimal bridge between the brain’s current and next state [60]. (b) Before employing a control
model, we define what a brain state is, i.e., how maps of brain activity are represented. In previous literature, states have been
defined as functional intrinsic networks [15, 17, 36], cytoarchitectonical hierarchy levels [61], or cognitive maps [48], to name
a few. These states are represented as single points in an N -dimensional state space, with N being the number of brain regions
that we control. We seek to find the shortest possible trajectory between two points in this space and generate activations such
that the brain is steered, or "controlled" along a previously optimised trajectory. (c) We define the current and next state of brain
activity to be related by the structural connectome of an individual (see Methods). The connectome imposes a resistance, or flow,
into the state space such that it is easier to make activity changes between states in one direction than another. Think of walking
on a hill where the walk uphill will be more strenuous than the downhill walk. In analogy to this, it costs the brain more energy,
called "control energy", to control its activity between particular states than others. This asymmetry has been the subject of study
in previous literature [48, 61]

by comparing them to normative measures of energy
metabolism. Moreover, we extend our methodology to
investigate organizational principles in brain dynamics
through control costs. Ultimately, our efforts seek to es-
tablish a foundation for comprehending how the brain
governs its functionality and the associated costs entailed
in this intricate control.

RESULTS

Here, we present our methodology to study the con-
trol costs of human brain dynamics, i.e., activity changes
over time, using network control theory. We begin by de-
scribing our analysis pipeline and the modelling choices
made to simulate the regional energy expenditure based
on anatomical and functional properties from diffusion
and functional magnetic resonance imaging (MRI) data
from n = 327 participants in the Human Connectome
Project Young Adult dataset [87]. Our work introduces a
new measure of control energy over time, time-averaged
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Figure 2. Estimating the costs of brain dynamics | (a) We begin by averaging the activity of all regions belonging to one of seven
canonical intrinsic networks of Yeo-Krienen [95] in the Schaefer-parcellation [69] and compare the amplitude in each time point.
For every time point, the network with the highest amplitude is assigned as the dominating network in that moment, yielding
a sequence of network dominance across the time (right). (b) Using the time markers of dominance for each network, BOLD
activity maps are averaged to generate a representative state map of activity. (c) We generate seven representative network state
maps, reflecting the average magnitude and sign of cortical activity during each network activation. (d) Following the sequence
of network dominance, we simulate the optimal control strategy in which the brain transitions between pairs of network states.
Thus, each transition yields a map of momentary control costs to move between states. We finally average all control maps across
transitions. (e) Our framework results in a map of time-averaged control energy for each individual, where the value of each
region represents the amount of control energy integration a region saw throughout the recording on average.
VIS: visual network; SMN: somatomotor network; DAN: dorsal attention network; SAL: salience ventral network; LIM: limbic
network; FPN: frontoparietal network; DMN: default mode network; BOLD: blood-oxygen-level-dependent; TCE: time-averaged
control energy.

control energy (TCE), which we relate to actual measure-
ments of energy metabolism based on positron emission
tomography (PET). Finally, we conclude our results by
investigating the transition costs between functional hi-
erarchical levels in the brain and find a dynamical rule
whereby brain switch frequency within and between lev-
els of the cortical hierarchy is inversely proportional to
its control cost.

Simulating the control costs of resting state dynamics

We take a multi-step approach to simulate the con-
trol costs of human brain dynamics. In brief, our pro-
cedure consists of identifying the dominant networks at
each time point (Fig. 2a). This information is used to
estimate the average activity across time-points where

each network dominates (Fig. 2b) in order to create
state maps for each intrinsic network (Fig. 2c). We then
use the sequence of network dominance to track the con-
trol energy required to transition through the respective
states (Fig. 2d). Finally, we average across all transi-
tions, yielding an estimate of the average costs to control
brain activity over time (Fig. 2e).

Our analysis begins by delineating intrinsic networks
as brain maps. When seeking to model task-related brain
states, it is possible to rely on statistical maps of param-
eter estimates [8] or meta-analytic maps [48]. How-
ever, neither of these approaches is feasible for modelling
brain activity at rest. Previous studies have taken two ap-
proaches to model resting states: On the one hand, states
have been defined according to a priori specified parcel-
lations, where areas that fall into a given intrinsic net-
work are represented with ones and all other areas with
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Figure 3. Time-Averaged Control Energy | (a) Averaging all TCE maps across individuals, we observe that the costs to control
resting state dynamics are regionally heterogeneous. (b) Regions in the dorsal attention network require the most control with
limbic regions costing the least. In general, temporal control costs display no preference for a hemisphere, with comparable values
evident in both the left and right hemispheres [Mann-Whitney U = 76390, P = 0.27]. (c) When stratifying our analysis by age,
we see no statistical difference in temporal control costs across ages groups [ANOVA F(3, 1596) = 0.133, P = 0.94]. Each dot
represents the subject-averaged value for a region-of-interest. Bars around the mean indicate standard deviation of the data.

zeros [17, 36]. On the other, resting states have been
derived from clustering techniques and then categorized
based on their similarity to binary intrinsic network maps
like in the previous approach [15, 71].

While both approaches offer a respective advantage,
they also come with their drawbacks. The former ap-
proach profits from the interpretability of previously es-
tablished brain networks with defined neurocognitive
functions. However, such binary, discontinuous state rep-
resentations are equally defined for all individuals, there-
fore losing important unique information about the sub-
ject. The latter approach circumvents this by using data-
driven clustering techniques to derive states from indi-
vidual data. However, given the possibility of multiple
solutions in clustering [23, 37, 41], there is no guarantee
that any representation of intrinsic networks are present,
thereby complicating the interpretability and replicabil-
ity of findings across studies. We thus propose a new
approach that preserves the intelligibility of intrinsic net-
works as states, is non-binary, and tailored to individual
data.

Our approach relies on an a priori definition of intrin-
sic networks, such as the canonical intrinsic networks
proposed by Yeo-Krienen [95], which are widely-used in

the neuroimaging literature. We begin by partitioning
the voxel-wise BOLD imaging data into parcel time se-
ries representing the time-activity of a region from an in-
trinsic network. The time series are then z-scored across
time and later averaged with other time series from the
same network (Fig. 2a). This yields a network-wise av-
erage activity for each time point in the recording. Intrin-
sic networks are then compared at each time point based
on their average activity and the network with the high-
est activity is designated the dominating network of that
time point. To control for noise, we discard time points
where no network activity surpasses a fixed threshold set
at half a standard deviation in average activity. We redo
our analysis with a lower threshold and also leave out the
network modelling altogether to validate our approach
(see Sensitivity and robustness analysis)

With the identified time points of dominance for each
intrinsic network in hand we proceed to compute the ac-
tual state representations of networks. The dominance
labels serve as temporal markers to define which time
points belong together. We average the activity within
such markers to yield a centroid-like representation that
resembles an intrinsic network, with a continuous mag-
nitude and sign that is captured by the activity of each

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2024. ; https://doi.org/10.1101/2024.01.24.577068doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.577068
http://creativecommons.org/licenses/by/4.0/


5

individual (Fig. 2b). These state coefficient maps repre-
sent each intrinsic network in the a priori defined parcel-
lation, with additional information about regions outside
the network that co-fluctuate with it (Fig. 2c).

To simulate the control energy between each net-
work coefficient map, we leverage structural information
about the anatomical connections of each individual, de-
rived from diffusion MRI. As referenced earlier, network
control methods require state maps to represent initial
and target positions from where we simulate the control
costs to move between them. Such costs are subject to
anatomical constrains imposed by the individual’s con-
nectome. In other words, we quantify the effort required
in each region to change its current activity to a desired
state, with other connected regions also contributing to
its change [33, 39, 60]. To maintain biological plausibil-
ity, we set our simulated path to follow an optimal trajec-
tory that balances the energy required to enable a tran-
sition with the proximity to the desired target state [33].
More simply, we simulated transitions that focus on en-
ergy minimization while imposing constraints to prevent
them from deviating into implausible, non-physiological
pathways that may otherwise provide a low-energy path-
way.

The results of our modelling of pairwise state transi-
tions manifest in an asymmetric matrix representing the
energy cost required to transition the entire brain from
one network state to another (Suppl. Fig. S2). The
inherent asymmetry in these costs arises from the direc-
tional flow imposed by the structural connectivity within
the state space. In another context, the states we have
modeled could be thought of lying on peaks and valleys,
where access is significantly easier in one direction than
the other — a phenomenon analogous to the contrast be-
tween ascending and descending a hill, with the former
requiring more energy.

Having captured the control cost of the transition be-
tween all pairs of resting states, we now reconcile this
information with the temporal sequence of the dominant
networks. This means that we use the network sequence
to simulate the energy required for the transitions be-
tween states as they occurred during the recording (Fig.
2d). We aggregate the transition energy over all pairs
of states in the recording sequence and then normalize
the cumulative energy by dividing it by the number of
transitions, i.e., we average the overall energy across
transitions. This normalization ensures that our mea-
surement remains comparable across different recording
durations. Ultimately, our approach culminates in the
derivation of a metric we refer to as time-averaged con-
trol energy, or TCE (Fig. 2e).

TCE is an estimate of the temporal control costs
associated with idiosyncratic intrinsic network activa-
tions across time (Fig. 3a). It is a spatially heteroge-
neous measure but we find that its distribution in left
and right hemispheres is statistically indistinguishable
[Mann-Whitney U = 76390, P = 0.27](Fig. 3b). More-
over, previous evidence indicates that control energy is

modulated by age [17, 80]. We find that stratifying by
age (using bins of 22-25, 26-30, 31-35, and 36+, with
247, 527, 418 and 14 individuals, respectively) does
not lead to any statistically significant group differences
[Levene W = 108, P = 0.955; ANOVA F (3, 1596) =
0.133, P = 0.94] (Fig. 3c). Taken together, we show that
the control costs of human brain dynamics are region-
specific, consistent between hemispheres, and conserved
across ages studied here.

Grounding control costs in metabolism

Previously, network control theory metrics were
shown to correlate with physiological markers of energy
metabolism [36], thereby establishing an initial bridge
between theoretical and tangible indicators of energy. As
such, we contextualize our results with neurobiological
maps to look for energetic correlates of temporal con-
trol costs. To accomplish this, we scrutinize the rela-
tionship between temporal control costs and two piv-
otal substrates of metabolic energy: oxygen and glucose
metabolism [13, 65] (Fig. 4).

Our initial investigation involved comparing TCE to
the regional variations in cerebral glucose metabolism
(CMRglc) across the cortex. To achieve this, we employed
a group-average template derived from an internally ac-
quired dataset [14] comprising n = 20 subjects who
underwent PET scans, utilizing 18F-Fluorodeoxyglucose
(FDG) as a tracer to monitor their glucose uptake (see
Methods).

Given the inherent spatial smoothness of our PET map,
we employ rigorous measures to validate our results by
contrasting them against 10,000 null maps that repli-
cate the variogram of the data [12]. These null maps
randomize the values in our PET map while account-
ing for the spatial autocorrelation inherent in the record-
ings, enabling us to distinguish true effects from spatially
induced artifacts using a modified P-value (PSMASH)
[12, 51]. Our results showed a weak correlation between
TCE and CMRglc, which, however, did not exhibit statisti-
cal significance when the spatial smoothness of the data
set was taken into account [Spearman ρ = 0.144, P =
0.003, PSMASH = 0.347].

Subsequently, we investigate the relationship between
TCE and cerebral oxygen uptake within the cortex.
Here, we employed a normative map of cerebral oxygen
metabolism (CMRO2) derived from [86]. This map was
computed from n = 33 participants who underwent PET
scans to estimate their cerebral oxygen consumption,
utilizing 15O-labeled oxygen (see Methods). We note
that the map is not quantified into cerebral metabolic
units; however, we retain the name for oxygen uptake as
CMRO2, in accordance with the original authors’ nomen-
clature for their activity concentration.

Given the same technical limitations as with the
CMRglc map, we generate 10,000 null maps that preserve
the spatial autocorrelation of the original data using the
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a | comparison to glucose metabolism (CMRglc)

b | comparison to oxygen metabolism (CMRO2)

Figure 4. Relationship to metabolism | (a) Left: We compared how time-averaged control energy spatially co-varies with glucose
metabolism from an internally acquired positron emission tomography (PET) dataset [14]. Glucose uptake has been previously
shown to scale with momentary control energy [36]. We, however, do not find a similar significant relationship to control energy
when considering its temporal dimension [Spearman ρ = 0.144, PSMASH = 0.347]. Shades around regression line represent 95%
confidence interval with 1000 bootstrap samples. Right: Distribution of spatial nulls. Correlation results accounted for spatial
autocorrelation in the data by using variogram-matched nulls [12, 51, 88]. (b) Left: Contrary to glucose metabolism, we found
that TCE is spatially similar to a representative cortical distribution of oxygen uptake from PET imaging [86] [Spearman ρ =
0.35, PSMASH = 0.027]. Shades around regression line represent 95% confidence interval with 1000 bootstrap samples. Right:
Distribution of spatial nulls. Correlation results accounted for spatial autocorrelation in the data by using variogram-matched nulls
[12, 51, 88].

same variogram-matching algorithm [12]. Our results
show that TCE significantly correlates with CMRO2, and
that this relationship is significant even after accounting
for the spatial autocorrelation in the data [Spearman ρ
= 0.35, P < 0.001, PSMASH = 0.027]. Altogether, we
find that the regional cortical pattern of temporal con-
trol costs resembles the spatial pattern of oxygen uptake,
establishing further evidence about the link between bi-
ological and control energy.

Temporal organisation of control costs

We now turn to a new perspective on brain states by re-
framing our analysis from the perspective of functional
hierarchical processing as defined by Mesulam [54]. Pre-
vious work has shown that control energy differs across
cortical hierarchies [61]. In this context, we examine the
control costs of switching within and between hierarchi-
cal levels across time, ultimately looking at their dynam-
ical organisation in time.

We begin by mapping the sequence of dominant net-
works to their respective levels within the functional hi-
erarchy of the brain (Fig. 5a). Visual and sensorimo-
tor networks are hereafter referred to as "unimodal", a
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Figure 5. Temporal organisation of control costs | (a) We map our sequence of dominating networks to their respective hierar-
chical level. This means sensory networks are jointly labelled as unimodal networks (U), with the remaining networks defined as
heteromodal, association networks (H). (b) Transitions within hierarchical levels represent the majority of transitions (86.5%) at
rest. (c) Averaging control costs across the whole brain, we observed that transitions within a hierarchical level required signifi-
cantly less TCE than between. Asterisks indicate high significance [Mann-Whitney U = 376072, P < 0.001]. Each dot per transition
type represents a subject. (d) We relate whole-brain control costs to transition frequency using repeated measures correlation [4]
to assess common intra-individual relationships and find that the number of transitions per transition type is negatively correlated
to the cost needed to perform such switch [rrm =-0.619, P < 0.001].

distinction that arises from their specialized processing
that assumes specific inputs[49, 54]. In turn, we re-
fer to all other networks as "heteromodal" (associative)
as they integrate multiple functional streams [54]. Bi-
modal mapping ensures consistency in our subsequent
validation with a different parcellation that defines in-
trinsic networks differently (Suppl. Fig. S5). More-
over, we show that adopting this new perspective pro-
vides a fresh view of the dynamics of the brain, uncover-
ing a relationship between TCE and state switching be-
havior. We follow the same framework to compute TCE,
but now separately average transitions within unimodal
networks, i.e., from unimodal to unimodal, and within

heteromodal networks, as well as transitions between
unimodal and heteromodal levels.

After mapping the sequence of dominating networks,
we observe that, on average for individuals, transitions
occur predominantly within a hierarchy rather than be-
tween hierarchies (Fig. 5b). Analogously, the con-
trol costs to transition between hierarchies are more de-
manding than those within a hierarchical level [Mann-
Whitney U = 376072, P < 0.001 ](Fig. 5c). Using re-
peated measures correlation [4, see Methods] to account
for repeated measures of control costs for each partici-
pant as well as their individual traits, we examine the
commonalities in the relationship between participants’
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control costs and transition frequency across hierarchies.
We find a robust negative correlation throughout the co-
hort [rrm =-0.619, P < 0.001], indicating that more fre-
quent transitions within a hierarchy are associated with
lower average control energy costs, in stark contrast to
infrequent, costly transitions that bridge different hier-
archical domains. We show that this relationship is not
an artefact of the network partition in our parcellation,
but is also evident when using alternative partitions (see
Sensitivity and robustness analysis). Altogether, our find-
ings suggests a dynamic temporal principle within the
brain that strives to minimize its control costs by keeping
expensive transitions sparse.

Sensitivity and robustness analysis

To ensure the robustness of our results, we replicate
our analyses on an independent dataset [14]. This addi-
tional dataset has lower spatial and temporal resolution
and is subjected to different preprocessing protocols (see
Methods). Indeed, even in the face of these differences,
our results remain unchanged (Suppl. Fig. S6).

We then repeat our analysis using an alternative corti-
cal parcellation [30]. This approach seeks to validate the
reproducibility of our results with a different definition
of intrinsic networks. We find that this approach leads
to consistent results (Suppl. Fig. S5). Additionally, we
investigate the impact of a coarser partition by dividing
the cortex into 200 regions instead of the original 400
regions. We find that this modification does not affect
our results (Suppl. Fig. S4).

Further, we test the impact of our state modelling step
by leaving it out and instead simulate the control costs
to transition between time points of raw activity, i.e., our
state maps are represented as the BOLD activity at each
time point. We form a group-average template like in
our main results and compare these results to the tem-
poral signal-to-noise ratio (tSNR) of each region. tSNR
is a metric to quantify the quality of a BOLD signal, cal-
culated as the mean of the signal prior to demeaning
and divided by the signal standard deviation [92]. We
compute the tSNR for each participant run in the HCP
dataset, re-scale it from 0 to 1 using min-max normaliza-
tion, and finally average it across runs.

We find that, when leaving out the state modelling
step, regions with high TCE are also regions that exhibit
a low temporal signal-to-noise ratio (tSNR) [Spearman ρ
= 0.36, Pspin = 0.042]. In contrast, using our approach
we observe that the group-level results are unlikely re-
lated to the group-level regional tSNR [Spearman ρ =
0.234, PSMASH = 0.232]. Following our main approach,
we discard time points with average activity below 0.5
but observe that, using a lower threshold of 0 instead,
our group-level results again show no significant rela-
tionship to regional signal quality [Spearman ρ = 0.274,
PSMASH = 0.099]. Moreover, we observed on an indi-
vidual level that a larger extent of participants’ TCE maps

were significantly related to their tSNR when leaving out
our modelling approach (Fig. S1). Taken together, this
suggests that modelling states using our approach miti-
gates the influence of noise in our analysis.

We conclude by examining whether temporal control
costs are related to the occurrence of resting states. This
would mean that the patterning of individual TCE maps
are a reflection of the most frequently occurring states.
To test this, we create a representative map of the occur-
ring intrinsic networks by counting how frequent, i.e.,
how many time points, each state occurs. Dividing this
number by the total number of time points yields an es-
timate of how much each network was present in the
recording, e.g., the visual network dominated 20% of
the time. We multiply this ratio with its correspond-
ing state coefficient map, thereby creating time-weighted
maps which we can sum together to create a map that
represents the frequency of each network and its spatial
distribution. Interestingly, we find no significant associa-
tion between this map and our TCE map (Spearman ρ =
0.27, PSMASH = 0.092; Suppl. Fig. S3). Altogether, we
conclude that our findings result from a convergence of
characteristic sequences of resting states and individual
anatomical constraints, which together form the basis to
simulate the control costs of resting state dynamics.

DISCUSSION

In the present study, we introduce a metric for assess-
ing the control costs inherent in human brain dynam-
ics, referred to as time-averaged control energy (TCE).
TCE serves as a composite measure quantifying the aver-
age control exerted by an individual to sustain dynamic
neural activity over time. Notably, our findings reveal a
statistically significant spatial resemblance between the
distribution of TCE and cortical oxygen metabolism, a
major energetic substrate crucial for compensating neu-
ral activity [35]. Our results further show that transi-
tions within uni- or heteromodal networks entail distinct
temporal control costs as opposed to transitions between
modalities, thereby offering insight into the temporal or-
ganisation of brain dynamics. Importantly, we provide
open-access code to facilitate the replication and exten-
sion of our results in subsequent studies.

Temporal control is a confluence of anatomical constraints and
state sequences

Network control theory is a powerful tool to investi-
gate the emergence of dynamics from the structural scaf-
fold of the brain [60]. Its application in neuroscience
has yielded valuable insights, e.g., into individual differ-
ences in psychiatric conditions [48, 62] or developmen-
tal changes in youth [17, 80]. Notably, controllability
is reported to increase asymptotically and plateau with
adolescence [80], potentially explaining the absence of
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age effects observed in our results.
We find that the distribution of temporal control costs

is spatially distinct, with certain brain regions requir-
ing higher TCE than others (Fig. 3). The extent of
engagement in this control dynamic may be influenced
by the manner in which control inputs propagate, remi-
niscent of the role of connectivity profiles in facilitating
diverse spreading dynamics across brain regions [56].
This spreading process may parallel the flow of control
throughout the connectome [78].

Control costs are further influenced by the specific
states the brain traverses. Our results corroborate pre-
vious findings [48, 61] indicating that control energy is
dependent on both initial and goal states (Fig. 5; Suppl.
Fig. S2). This underscores the significance of our state-
modelling approach that determines the sequence of net-
work dominance based on intrinsic network activations,
thereby establishing the order of state transitions.

Our methodology demonstrates robustness across dif-
ferent partitions of intrinsic networks (Suppl. Fig. S5,
S4), as well as separate datasets (Suppl. Fig. S6).
Nonetheless, our state-modelling approach trades off ro-
bustness for temporal granularity, thereby losing the abil-
ity to capture temporal shifts in brain activity. Indeed,
brain dynamics are hypothesized to be temporally or-
ganised such that high-amplitude modes of activity are
counterbalanced by transient ’off’ states [67, 90, 99]. We
prompt future investigations to experiment with alter-
native state-modelling methods, like sliding-window ap-
proaches, for improved temporal precision. Appropriate
tests should, however, be developed in tandem to distill
real fluctuations from spurious ones [42, 97].

Finally, we note that our model of network control is
linear, therefore assuming that linear dynamics govern
brain transition [39]. While nonlinear models of neural
dynamics have shown promise in simulating brain activ-
ity [9], the use of first-order linear approximations has
proven sufficient to model activity at a macroscale [57].
Furthermore, recent studies have showcased how such
linear control models are expandable to account for bio-
logical heterogeneities in receptor availability [71, 72] or
cortical abnormalities in patient populations [48]. Con-
sequently, we see potential for future efforts to expand
on our work in order to investigate how temporal control
costs are modulated by incorporating additional biologi-
cal insights or clinical distinctions.

Control costs reflect metabolic features of the brain

Our results show that temporal control costs co-
localize with oxygen metabolism, but not glucose
metabolism (Fig. 4). A previous study from He et al.
[36] showed that control energy and glucose uptake
are similarly put out of balance between hemispheres
in temporal lobe epilepsy (TLE) patients. The authors,
however, only show this relationship in the limbic sys-
tem and, moreover, their methodology does not con-

sider the costs of temporal switching, but seeks to link
relative hemispheric asymmetries in momentary control
costs and glucose uptake to explain structural changes in
TLE patients. In contrast, our study relates control and
metabolism on an absolute whole-brain basis and con-
siders the temporal dimension of control costs.

Moreover, while both glucose and oxygen constitute
fundamental components for meeting the energetic de-
mands of neural activity [13, 35, 44, 53, 86, 91], they ex-
hibit distinct spatial patterns. The predominant energy-
producing pathways in the brain encompass glycolysis
and oxidative metabolism, where glycolysis relies on glu-
cose and oxidative metabolism relies on glucose-derived
pyruvate and oxygen [13, 21]. The disparate spatial dis-
tribution of glucose and oxygen metabolism is attributed
to their dissimilar upscaling capacities for energy gen-
eration [20, 22, 96]. Specifically, certain regions are
posited to favor glycolysis beyond basal levels of oxygen
and glucose consumption at an equable ratio in order to
afford greater flexibility in energy demand necessary for
supporting human cognition [47, 86]. In light of these
considerations, our association of temporal control costs
with the spatial distribution of oxygen, rather than glu-
cose metabolism, supports the interpretation that con-
trol of human brain dynamics is grounded in baseline
metabolic activity constituent of oxidative energy gener-
ation.

We note, however, that our conclusion is based on
group-level comparisons of control costs and metabolic
maps. Further research is warranted to investigate the
nuanced relationship between control costs and energy
metabolism at an individual level. Advances in MR imag-
ing now enable the simultaneous acquisition of BOLD
and oxygen metabolism data from the same subjects
[24], providing an avenue for in-depth exploration of
this relationship. Finally, we underline that our re-
sults are not confounded by the fact that we use BOLD-
imaging data, as the BOLD signal reflects blood flow,
which represents oxygen availability rather than neces-
sarily indicating oxygen consumption [26].

State switching is grounded by control costs

We observed that the costs required to transition
within and between hierarchical levels, i.e., unimodal or
heteromodal, were significantly different (Fig. 5c,d).
Similarly, this phenomenon was mirrored in the fre-
quency with which the brain either transitions out or per-
sists in a hierarchical level (Fig. 5b,d). This means that
costly transitions between hierarchical levels were rare,
with more efficient transitions within hierarchical levels
happening more frequently.

In order to enable information flow, the human brain
is posited to switch between modes of integration and
segregation over time, where segregation refers to re-
gions clustering together to form functionally distinct
modules and integration represents a form of global in-
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tercommunication between modules [18, 25, 70]. Build-
ing upon this, we propose that the transitions between
functional hierarchical levels may reflect an integration-
segregation dynamic. In this sense, switches between hi-
erarchical levels might represent modes of communica-
tion among functional hierarchies, counterbalanced by
switches within hierarchical levels as modes of segre-
gated activity. As previous studies have shown the dis-
ruption of integration-segregation dynamics by pathol-
ogy or altered states of consciousness [45, 46], future
works could investigate whether such conditions equally
disrupt state switching dynamics.

Furthermore, we hypothesize that the inverse correla-
tion between control costs and state visits represents a
mechanism where the brain seeks to maintain functional
diversity, while minimizing its energy expenditure. This
is similar to the hypothesis put forward by Zalesky, et
al. [98], where the authors posit that the brain transi-
tions through costly, intermittent states in order to fa-
cilitate global integration while keeping energy demand
minimal. As such, we encourage future efforts to further
elucidate our understanding of the intricacies governing
state switching dynamics and control costs.

In conclusion, our work presents a new perspective of
control energy as a measure of the costs to control hu-
man brain dynamics. We are able to show that temporal
control costs are spatially related to oxygen metabolism
as an energy substrate; and uncover an organisational
principle that relates temporal dynamics to their costs in
the brain. As such, we envision that our work can help
advance research on the costs of regulating brain activity.

METHODS

All preprocessed data is available at
https://osf.io/nw9zt. The code and additional
data used to perform the analyses are available at
https://github.com/NeuroenergeticsLab/control_costs.

Data

Human Connectome Project (HCP)

The main data used for this study consisted of rest-
ing state time series from functional MRI (fMRI) and
structural connectomes from diffusion MRI (dMRI) taken
from the Human Connectome Project S900 Young Adult
release [87]. Scans from 327 unrelated participants
(mean age 28.6 ± 3.73 years, 55% females) were used
to ensure that familial factors do not confound our anal-
ysis [55]. Informed consent was obtained for all subjects
(the protocol was approved by the Washington Univer-
sity Institutional Review Board as part of the HCP). The
participants were scanned in the HCP’s custom Siemens
3T “Connectome Skyra” scanner, and the acquisition pro-
tocol included four 15-minute resting state fMRI sessions

and a high angular resolution diffusion imaging (HARDI)
sequence. The resting state fMRI data was acquired us-
ing a gradient-echo EPI sequence (TR = 720 ms; TE =
33.1 ms; FOV = 208 × 180 mm2; voxel size = 2 mm3;
number of slices = 72; and number of volumes = 1200).
The dMRI data was acquired with a spin-echo EPI se-
quence (TR = 5520 ms; TE = 89.5 ms; FOV = 210 ×
180 mm2; voxel size = 1.25 mm3; b-value = three dif-
ferent shells i.e., 1000, 2000, and 3000 s/mm2; number
of diffusion directions = 270; and number of b0 images
= 18). Additional information regarding the acquisition
protocol can be found under [87].

To process the functional data, each run of each sub-
ject’s resting state fMRI recording was pre-processed in
terms of gradient distortion correction, motion correc-
tion, and spatial normalization according to [76] and
[29]. Artefacts were then removed using ICA-FIX [68].
Inter-subject registration of cerebral cortex was carried
out using areal feature-based alignment and the Multi-
modal Surface Matching algorithm [66]. The clean time
series were then parcellated into 400 and 200 cortical
region time series according to the Schaefer functional
atlas[69].

To process the diffusion data, structural connectomes
were reconstructed from the dMRI data using the MR-
trix3 package [84]. Grey matter was parcellated into
400 and 200 cortical regions according to the Schae-
fer functional atlas [69] and fiber orientation distribu-
tions were generated using a multi-shell multi-tissue con-
strained spherical deconvolution algorithm [19, 38]. The
initial tractogram was generated with 40 million stream-
lines, with a maximum tract length of 250 and a frac-
tional anisotropy cutoff of 0.06. Spherical-deconvolution
informed filtering of tractograms (SIFT2) was used to
reconstruct whole brain streamlines weighted by cross-
section multipliers [74]. More information regarding the
individual network reconstructions is available in [59].

TUM Dataset

The replication data consisted of simultaneously mea-
sured FDG-PET and fMRI, with subsequent dMRI record-
ings, all while the participants kept their eyes open.
Scans from 20 participants (mean age 34.2 ± 5.99 years,
50% females) were used. Informed consent was ob-
tained for all subjects (the protocol was approved by
the Technical University of Munich Review Board). The
participants were scanned an integrated PET/MR (3T)
Siemens Biograph mMR scanner (Siemens, Erlangen,
Germany) and used a 12- channel phase-array head coil
for the MRI acquisition. The PET data were collected in
list-mode format with an average intravenous bolus in-
jection of 184 MBq (s.d. = 12 MBq) of [18F]FDG. In par-
allel to the PET measurement, automatic arterial blood
samples were taken from the radial artery every second
to measure blood radioactivity using a Twilite blood sam-
pler (Swisstrace, Zurich, Switzerland).
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The functional MRI data were acquired during a 10
min time interval using a single-shot echo planar imag-
ing sequence (300 volumes; 35 slices; repetition time,
TR = 2000 ms; echo time, TE = 30 ms; flip angle, FA =
90°; field of view, FOV = 192 × 192 mm2 ; matrix size
= 64 × 64; voxel size = 3 × 3 × 3.6 mm3 ). Diffusion-
weighted images were acquired using a single-shot echo
planar imaging sequence (60 slices; 30 non-colinear gra-
dient directions; b-value = 800 s/mm² and one b=0
s/mm² image; TR = 10800 ms, TE = 82 ms; FA = 90°;
FOV = 260 x 264 mm²; matrix size = 130 x 132; voxel
size = 2 x 2 x 2 mm3). Additional information regarding
the acquisition protocol can be found under [14].

To process the functional data, each subject’s resting
state fMRI recording was pre-processed using the Con-
figurable Pipeline for the Analysis of Connectomes (CPAC
v1.4.0) [16]. This included slice-timing correction, mo-
tion correction, spatial normalization, quadratic and lin-
ear detrending of scanner drift, anatomical CompCor re-
gression of white matter and cerebrospinal fluid activity
[6], and subsequent bandpass-filtering (0.01 - 0.1 Hz).
More details can be found in [14].

To process the diffusion data, structural connectomes
were generated using the MRtrix3_connectome BIDS
App [31], which operates principally using tools pro-
vided in the MRtrix3 package [84]. This included:
DWI denoising [89], Gibbs ringing removal [40], pre-
processing [1, 2], bias field correction [85], inter-modal
registration [7], brain extraction [75], T1 tissue seg-
mentation [63, 73, 75, 100], spherical deconvolution
[38, 83] and probabilistic tractography [82] utilizing
Anatomically-Constrained Tractography [73] and dy-
namic seeding [74]. The resulting fiber track files were
subsequently converted into streamline counts by count-
ing the number of streamlines that passed through one of
the 400 cortical regions according to the Schaefer func-
tional atlas[69]. In order to compensate for the bias to-
ward longer fibers inherent in the tractography proce-
dure, as well as differences in region size, we normal-
ized the streamline count by the average length of the
streamlines and average surface area of the two regions
[34]

To process the PET data, the first 45 minutes of the PET
acquisition were reconstructed offline using the NiftyPET
library [52] based on the ordered subsets expectation
maximization (OSEM) algorithm with 14 subsets, 4 iter-
ations, and divided into 33 dynamic frames: 10 x 12 s, 8
x 30 s, 8 x 60 s, 2 x 180 s and 5 x 300 s. The attenuation-
correction was based on the T1-derived pseudo-CT im-
ages [11]. All reconstructed PET images were motion
corrected and spatially smoothed (Gaussian filter, FWHM
= 6 mm). The net uptake rate constant (Ki) was calcu-
lated using the Patlak plot model [64] based on the last 5
frames of the preprocessed PET images (frames between
20 to 45 minutes) and the arterial input function derived
from the preprocessed arterial blood samples. The cere-
bral metabolic rate of glucose (CMRglc) was calculated by
multiplying the Ki map with the concentration of glucose

in plasma of every participant, divided by a lumped con-
stant of 0.65 [93]. Finally, the CMRglc maps were partial
volume corrected using the GM, WM and CSF masks de-
rived from the T1 images using the iterative Yang method
[94] and finally registered to the MNI152NLin6ASym
3mm template through the anatomical image.

Additional data

In addition to the metabolic map of glucose uptake
from the TUM dataset, we complemented our anal-
ysis with a normative, group-average map of oxygen
metabolism (CMRO2) from [86], acquired through neu-
romaps [50]. The brain map was derived from 33
healthy, right-handed neurologically normal participants
(mean age 25.4 ± 2.6 years, 58% females) that were re-
cruited from the Washington University community. The
recording was performed using a Siemens model 961
ECAT EXACT HR 47 PET scanner (Siemens/CTI) with
47 slices encompassing an axial field of view of 15 cm.
Transverse resolution was 3.8–5.0 mm FWHM and ax-
ial resolution was 4.7–5.7 mm full width at half max-
imum (FWHM). Attenuation data were obtained using
6868GeGa rotating rod sources to enable quantitative
reconstruction of subsequent emission scans. Emission
data were obtained in the 2D mode (interslice septa
extended). The PET data were reconstructed using a
ramp filter (≈6 mm FWHM) and then blurred to 12
mm FWHM. Distribution of CMRO2 was measured with
a 40 second emission scan (derived from a 120 sec-
ond dynamic scan) after brief inhalation of 60 mCi of
[15O]oxygen in room air. More details on the recording
parameters and processing can be found in [86].

Network control theory

Network control theory (NCT) is a framework that pro-
vides the approach to computing metrics related to the
control of brain activity.

Fundamental to NCT is the definition of the brain as
a networked system with nodes connected by edges and
defined by an adjacency matrix A. Biologically, the ma-
trix A represents the thick bundles of myelinated axonal
fibers that run through large-scale connections of brain
regions [77]. These fibers are thought to play a critical
role in coupling the activity of distant brain regions [3].

By accounting for connections of at the brain-region
level, an equation relating brain structure to time-
evolving brain activity x(t) can be formulated as:

ẋ = Ax(t), (1)

where ẋ and x are of size Nx1 and A NxN , with N is
the number of brain regions. In practice, the matrix A is
normalized in order to avoid infinite growth, and as such
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defined as:

Anorm =
A

λ(A)max + c
− I (2)

where λ(A)max is the largest eigenvalue of A and c a
constant that determines if the system approaches the
corresponding mode of A (c = 0) or decays towards zero
(c > 0). Here, c is set to 1. For simplicity, Anorm will
be referred to as A from now on, assuming that all the
following equations make use of a normalized matrix.

Looking at the assumptions made, equation 1 imposes
that the temporal evolution of the brain is a linear func-
tion that is described by its connectivity and its current
state in time. In addition to linearity it is important to
note that this equation assumes that A is not changing,
i.e., the brain is a time-invariant system, and that brain
dynamics are noise-free [39, 78].

From here, equation 1 can be extended to account for
controlled dynamics that steer the system away from its
natural trajectories through an external input. Formally,

ẋ = Ax(t) +Bu(t) (3)

with u(t) representing the injected control input into the
system at time t and the columns in B representing the
total number of voxels or regions of interest to control.
Depending on the number of regions m that the modeler
decides to control, u(t) is of size mx1 and, correspond-
ingly, B is of size Nxm. Each element in bij represents
the influence that an external input uj(t) has on region
i, where j = 1, ..,m and i = 1, ..., N . By including con-
trolled dynamics in equation 3 it is now possible to model
optimal trajectories between brain states and calculate
their optimal control energy.

Optimal control energy

Optimal control energy provides a measure of the con-
trollability of a system in terms of 1) the state trajectory
traversed and 2) the work required to reach a state. It
further specifies a time horizon T during which the con-
trol input u(t) is effective in moving the system from the
initial state x(0) = x0 to the goal state x(T ) = xT .

Formally, the problem of reaching xT starting from x0

while keeping 1) and 2) minimal is as follows:

u(t)∗ = argmin
u

∫ T

0

∆x(t)T∆x(t) + ρu(t)Tu(t))dt (4)

with ∆x(t) being the distance to the goal state at time
t, i.e.,

∆x(t) = xT − x(t). (5)

Moreover, ρ determines the relative weighting be-
tween the costs associated with the length of the state
trajectory and input energy. An usual choice is to set
ρ = 1 as to weight both goals equally [32, 39]. Once
equation 4 is minimized, an optimal control energy can
be derived from u(t)∗:

E∗ =

∫ T

0

u(t)∗Tu(t)∗dt (6)

The optimal energy E∗ was computed for each spatial
unit (in this case regions from a parcellation). These val-
ues therefore represent the quadratic input across model
time to optimally move towards a goal state given an ini-
tial state.

Readers interested in a more in-depth discussion about
the mechanisms of network control theory are invited to
read the review from [78], as well as [60]. For more
discussions on parameter sensibilities of the model, in-
terested readers are referred to the exhaustive study by
[39].

Repeated measures correlation

Repeated measures correlation (rrm) is a statistical
technique developed by Bakdash et al. [4] to examine
the common association between variables within each
subject, focusing on accounting for within-individual as-
sociations in paired measures. This method is particu-
larly valuable when dealing with repeated measures on
the same participants — in our case four control cost
estimates for each hierarchical transition. Because this
method only assesses the common slope across partici-
pants, we can investigate whether there is a consistent
relationship trend throughout measurements while au-
tomatically correcting for individual confounding factors
such as the participant’s gender or age.
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a | state modelling choice impact on individual results

b | impact on group results

Figure S1. Intrinsic network modelling validation | (a) The temporal signal-to-noise ratio (tSNR) of each individual’s recording
was estimated by dividing their mean signal prior to demeaning with their signal variability [92]. This metric was compared to
their control costs from three modelling approaches: 1) our reported approach to use intrinsic networks as states, where only time
points with an average network activity above 0.5 are selected; 2) same as 1) but with an activity threshold of 0; 3) raw BOLD
activity are used as states. The first two approaches result in TCE maps that correlate similarly to their respective tSNR (left),
with only few subjects showing significance in their associations(right). Using the third approach, however, results in control
costs being negatively correlated to tSNR (left), and more individual’s control maps being significantly related to the tSNR of their
recording (right). (b) We see similar results on a group-level, where we average all control maps and tSNR across subjects. In both
state modelling approaches, we observe that control costs and tSNR are not significantly associated, however, the lower threshold
variant results are statistically more unlikely to be discernible [Spearman ρ = 0.234, PSMASH = 0.232 for thr=0.5 and Spearman
ρ = 0.274, PSMASH = 0.099 for thr=0]. Critically, the group-average map of TCE significantly correlates with tSNR when opting
for no state modelling [Spearman ρ = -0.36, PSMASH = 0.042].
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a | transition energy between states b | energy asymmetry when visiting states
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Figure S2. Transition energy matrix | (a) We simulate the control energy to transition between all of pairs of intrinsic networks.
Similar to previous work [48, 61], we find that the costs to transition into a state are dissimilar to the costs of leaving it. (b)
We highlight this asymmetry by subtracting the transition energy matrix with its transpose, thereby accentuating the difference
between going into and leaving a state.
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a | subject-wise state occurrence (mean and std)

b | occurrence-weighted average state coefficients

Figure S3. Control costs vs. state coefficients | (a) State occurrences are counted for each individual. We report the average
and standard deviation of each state distribution. (b) Left: Weighting each network map by their occurrence and then summing all
maps yields an occurrence-weighted state coefficient map. This is averaged across all individuals and compared to the group-level
TCE map. Right: TCE and state coefficients are not significantly correlated when accounting for spatial autocorrelation [Spearman
ρ = 0.27, PSMASH = 0.092].
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a | control cost map

b | comparison to CMRglc

c | comparison to CMRO2

d | state occurrences vs. control costs

Figure S4. Replication with Schaefer 200 parcellation| (a) TCE map across both hemispheres. (b) No significant relationship
to CMRglc [Spearman ρ = 0.164, PSMASH = 0.344]. (c) Significant relationship to CMRO2 [Spearman ρ = 0.366, PSMASH =
0.037]. (d) Whole-brain TCE is inversely related to the number of transitions across hierarchies [rrm = -0.553, P < 0.001].
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a | control cost map

b | comparison to CMRglc

c | comparison to CMRO2

d | state occurrences vs. control costs

Figure S5. Replication with Gordon parcellation | (a) TCE map across both hemispheres. (b) No significant relationship to
CMRglc [Spearman ρ = 0.151, PSMASH = 0.297]. (c) Significant relationship to CMRO2 [Spearman ρ = 0.276, PSMASH =
0.042]. (d) Whole-brain TCE is inversely related to the number of transitions across hierarchies [rrm = -0.696, P < 0.001].
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a | control cost map

b | comparison to CMRglc

c | comparison to CMRO2

d | state occurrences vs. control costs

Figure S6. Replication with separate dataset [14] | (a) TCE map across both hemispheres. (b) No significant relationship to
CMRglc [Spearman ρ = 0.111, PSMASH = 0.317]. (c) Significant relationship to CMRO2 [Spearman ρ = 0.242, PSMASH =
0.031]. (d) Whole-brain TCE is inversely related to the number of transitions across hierarchies [rrm = -0.39, P < 0.01].
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