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Abstract 8 

Capturing and tracking large-scale brain activity dynamics holds the potential to deepen our 9 

understanding of cognition. Previously, tools from Topological Data Analysis, especially Mapper, 10 

have been successfully used to mine brain activity dynamics at the highest spatiotemporal 11 

resolutions. Even though it is a relatively established tool within the field of Topological Data 12 

Analysis, Mapper results are highly impacted by parameter selection. Given that non-invasive 13 

human neuroimaging data (e.g., from fMRI) is typically fraught with artifacts and no gold 14 

standards exist regarding “true” state transitions, we argue for a thorough examination of 15 

Mapper parameter choices to better reveal their impact. Using synthetic data (with known 16 

transition structure) and real fMRI data, we explore a variety of parameter choices for each 17 

Mapper step, thereby providing guidance and heuristics for the field. We also release our 18 

parameter-exploration toolbox as a software package to make it easier for scientists to 19 

investigate and apply Mapper to any dataset.  20 
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 2 

1. Introduction 24 

A main interest in neuroscience research is understanding the relationship between brain 25 

dynamics and behavior. Due to the high dimensionality and complexity of recorded neuronal 26 

data, computational methods have been developed to capture and track brain dynamics. While 27 

there are many available methods to quantify brain dynamics (Chang & Glover, 2010; Liu & 28 

Duyn, 2013; Shine et al., 2016; Xu & Lindquist, 2015), with a few exceptions, most require 29 

collapsing (or selecting) data in space, time, or across people at the outset (Saggar et al., 2022, 30 

2018). To capture specific individual transitions in brain activity at the highest spatiotemporal 31 

resolutions without necessarily averaging (or selecting) data at the outset, the Topological Data 32 

Analysis based Mapper approach was developed (Saggar et al., 2018; Singh et al., 2007). The 33 

Mapper approach is typically used to characterize the “shape” of the underlying dataset as a 34 

graph (a.k.a. shape graph). Further, a priori knowledge about the number of whole-brain 35 

configurations is unnecessary, and Mapper does not impose strict assumptions about the 36 

mutual exclusivity of brain states (Baker et al., 2014).  37 

 38 

Previously, Mapper has been applied to capture transitions in task-evoked (Geniesse et al., 39 

2022, 2019; Saggar et al., 2018; M. Zhang, Chowdhury, et al., 2022) as well as intrinsic brain 40 

activity (Saggar et al., 2022). Mapper was also used to examine changes in brain dynamics 41 

associated with pharmacological interventions (Saggar et al., 2022). Even in domains beyond 42 

neuroimaging, Mapper has also been successfully utilized (Lum et al., 2013; Nicolau et al., 43 

2011; Skaf & Laubenbacher, 2022; Yao et al., 2009). While Mapper has been applied to 44 

neuroimaging data in the past, Mapper's parameter choices have yet to be fully explored. 45 

Theoretical work has proposed a data-driven selection of mapper parameters (Carriere et al., 46 

2018; Chalapathi et al., 2021), but the algorithms are limited to 1-dimensional covers, requiring 47 

more work to extend it to neuroimaging datasets that need higher dimensional covers. Current 48 
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 3 

approaches to parameter selection on neuroimaging data are based on heuristics and educated 49 

guesses (Geniesse et al., 2022). To contribute to this body of work, we aim to investigate the 50 

effect of parameter selection on neuroimaging data by systematically deconstructing each 51 

Mapper step and revealing the impact of different parameter choices. We also provide software 52 

tools for performing similar parameter explorations to facilitate broader applications of Mapper. 53 

 54 

In a typical application of Mapper to study neural dynamics, after standard preprocessing steps, 55 

the high-dimensional data is fed to the pipeline as a 2D matrix, where rows correspond to 56 

individual time frames and columns correspond to regional activations. The Mapper pipeline 57 

consists of five main steps (Fig 1). First, a distance metric is picked to define the relationship 58 

between each row element in the original high-dimensional space. Second, the filter function 59 

embeds the data into a lower dimension. Third, overlapping low-dimensional binning is 60 

performed to allow for compression, putatively increasing reliability (by reducing noise-related 61 

perturbations). Fourth, partial clustering within each bin is performed, where the original 62 

distances between data points are used for coalescing (or separating) those points into graph 63 

nodes, allowing for the partial recovery of the information loss incurred due to the filter function 64 

(the dimensionality reduction). Lastly, nodes from different bins are connected if data points are 65 

shared to generate a graphical representation of the data landscape. As a result, the topological 66 

information of the input data is represented as a “shape graph,” denoting the dynamical 67 

trajectory through recurring states. 68 

 69 

Although Mapper has successfully revealed brain dynamics at rest and task-evoked states, the 70 

algorithm’s parameter choices and their impact on the final resulting shape graphs are rarely 71 

scanned systematically. In this paper, using simulated and real fMRI datasets, we examine 72 

multiple parameter choices for each deconstructed algorithm step to understand its final 73 

contribution to the shape graph of neural dynamics. We quantify the success of Mapper 74 
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 4 

parameters by evaluating the shape of the resulting graph using specialized Goodness-of-Fit 75 

metrics. This work can guide navigating the Mapper algorithm and choosing parameters based 76 

on individual goals. Our analysis reveals that multiple parameter configurations lead to the same 77 

outcome of capturing the expected neural dynamics. Consequently, we aim to prescribe a 78 

robust and fast method to apply the Mapper algorithm. In support of this objective, we introduce 79 

and release a software library designed to streamline the application of Mapper on diverse 80 

datasets. 81 

 82 

 83 

2. Methods 84 

2.1 Mapper algorithm 85 

The Mapper algorithm creates a graph representation that preserves the topological features of 86 

the inputted high-dimensional data (Lum et al., 2013; Singh et al., 2007). The input data is a set 87 

of measurements of N points with M features represented by a 2-dimensional NxM matrix. In 88 

Fig. 1, we outline the Mapper steps and results on a synthetic Trefoil knot dataset, where we 89 

sampled points with three features, the x, y, and z coordinates (Fig. 1a). For typical 90 

neuroimaging data, the time-by-regions matrix has data points collected at time intervals 91 

(repetition time or sampling rate) at specific anatomical locations (brain voxels or parcels, or 92 

scalp location).  93 

 94 

We divided the Mapper algorithm into five consecutive steps: (i) pick a distance metric and 95 

optionally compute pairwise distances between all points (Fig. 1b); (ii) project the data into a 96 

reduced low-dimensional space (or create a k-NN graph in case of intrinsic binning later) (Fig. 97 

1c); (iii) separate the space into overlapping bins (Fig. 1d); (iv) cluster points within bins in the 98 

low-dimensional space using information from the high-dimensional data, coalescing into nodes 99 
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 5 

(Fig. 1e); and (v) link the nodes across bins if they share any data points (Fig. 1f). The result is 100 

a “shape” graph where each node represents one or more rows (or time points), and an edge 101 

represents shared rows between nodes. 102 

 103 

While many parameter choices will extract the main topological features of the input data, some 104 

combinations will yield poorly defined shape graphs. In the following sections, we will present 105 

several possible parameters for each Mapper step. The parameter choices and their impact on 106 

the final shape graph will be presented as empirical results. 107 

 108 

Figure 1: Mapper steps on synthetic Trefoil Knot. (a) The trefoil knot dataset contains 109 
sampled 3-dimensional points that are represented as dots. The true shape of this data is a 110 
closed loop. The points are colored to track their transformation in subsequent Mapper 111 
algorithm steps. (b) The first step of the Mapper algorithm is selecting a distance metric and 112 
optionally computing pairwise distances between all data points. One chooses between a 113 
magnitude metric such as Euclidean or Cityblock (Manhattan) distances, an angle metric such 114 
as Cosine or Correlation distance, or a geodesic metric based on a constructed k-Nearest 115 
Neighbor (k-NN) graph with an associated distance metric. The red lines between points A and 116 
B signify a schematic representation of the metric choice. The geodesic distance metric is 117 
defined as the pathway length between the two points or the number of hops on the constructed 118 
k-NN graph. (c) As a second step, the pairwise similarity matrix is projected to a reduced space 119 
(using a filter function) either through a dimensionality reduction algorithm or by selecting the k-120 
Nearest Neighbors (k-NN) graph. (top) When using a dimensionality reduction technique such 121 
as Classical Multidimensional Scaling (CMDS) or t-distributed stochastic neighbor embedding (t-122 
SNE), the algorithm represents the sampled points in a lower dimensional (2 dimensions) 123 
embedding. (bottom) Alternatively, using a k-NN algorithm, each point connects to k neighbors, 124 
forming a graph where black lines represent the edges. The resulting k-NN graph is presented 125 
within the original 3-dimensional space to demonstrate the property of preserving high-126 
dimensional features. The filter function choice determines the binning strategy, indicated by the 127 
black arrows between the (c) and (d) boxes. (d) The binning step segments the reduced space 128 
of points into coherent regions that cover the lens (the result of the filter function). (top) An 129 
embedding filter function requires the extrinsic binning choice, where the points are separated 130 
into overlapping bins. We used a resolution of 4 and a gain of 33%, resulting in 16 overlapping 131 
rectangular bins total (4 bins per dimension). (bottom) For a k-NN filter, the intrinsic binning 132 
step selects points as landmarks and segments the space as distances from the picked 133 
landmarks. Each landmark is represented as a square-bordered dot with its surrounding bin as 134 
a dotted-line circle. We used a resolution of 4, denoting four landmarks total, with the gain as 135 
the distance from a landmark. (e) As the partial clustering step of the Mapper algorithm, the 136 
points in each bin are clustered into groups using the single linkage clustering algorithm or 137 
Density-based spatial clustering of applications with noise (DBSCAN). Each resulting cluster is 138 
represented by a large opaque circle, while the original data points are presented as colored 139 
dots. The size and color of the cluster is determined by the number of points and the type of 140 
points represented, respectively. Clustering of the data points is performed for each generated 141 
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 6 

bin in the original high-dimensional space to reduce the information lost due to embedding 142 
(partial clustering). The clustered groups will represent the nodes in the constructed graph. (f) 143 
As the final step of the algorithm, the nodes are linked by edges, created based on shared data 144 
points between the clusters, creating the Mapper “shape graph.” 145 

2.1.1 Distance metric 146 

The first step of the Mapper algorithm is defining a distance metric for the dataset, designating 147 

the relationship between points in the original high-dimensional space (Fig. 1b). The distance 148 

metric picked is the main parameter defining this step. Here, we analyzed three broad measures 149 

of distance: angle-based measures (Cosine and Correlation), magnitude measures (Euclidean, 150 

Cityblock, and Chebychev) (Bobadilla-Suarez et al., 2020), and the geodesic (or shortest path) 151 

metric. On the trefoil knot example, we exemplify the conceptual difference between the three 152 

metric types for two selected points (Fig. 1b). Due to the high computational cost of generating 153 

pairwise distances, we did not use the distributional magnitude measurements like Mahalanobis 154 

and Bhattacharyya distances that take advantage of the covariance relations of the input data 155 

(Bobadilla-Suarez et al. 2020). We use the following dissimilarity measures for the two vectors 𝑥 156 

and 𝑦, representing the distance or the dissimilarity between those two points: 157 

 158 

𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 (𝑥, 𝑦) =  √∑

𝑖

(𝑥𝑖 − 𝑦𝑖)2 159 

 160 

𝑑𝑐𝑖𝑡𝑦𝑏𝑙𝑜𝑐𝑘(𝑥, 𝑦) =  ∑

𝑖

|𝑥𝑖 − 𝑦𝑖| 161 

 162 

𝑑𝑐ℎ𝑒𝑏𝑦𝑐ℎ𝑒𝑣 (𝑥, 𝑦) =  𝑚𝑎𝑥𝑖( |𝑥𝑖 − 𝑦𝑖| ) 163 

 164 

𝑑𝑐𝑜𝑠𝑖𝑛𝑒 (𝑥, 𝑦) =  1 −
𝑥 ⋅ 𝑦

√(𝑥 ⋅ 𝑥)(𝑦 ⋅ 𝑦)
 165 
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 7 

 166 

𝑑𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (𝑥, 𝑦) = 1 −
(𝑥 − 𝑥̅) ⋅ (𝑦 − 𝑦̅)

√(𝑥 − 𝑥̅) ⋅ (𝑥 − 𝑥̅) √(𝑦 − 𝑦̅) ⋅ (𝑦 − 𝑦̅)
 167 

 168 

Where 169 

𝑥̅ =
1

𝑁
∑𝑖 𝑥𝑖  170 

 𝑦̅ =
1

𝑁
∑𝑖 𝑦𝑖 171 

And the operation 𝑎 ⋅ 𝑏 is the dot product between vectors 𝑎 and 𝑏. 172 

 173 

We defined the correlation distance as 1 - Pearson correlation, as Pearson correlation is 174 

frequently used as a similarity metric in neuroimaging studies (Davis and Poldrack 2014, Davis, 175 

Xue et al. 2014, Kriegeskorte et al. 2008, Nili et al. 2014, Xue et al. 2010), neuroimaging studies 176 

using Mapper (Kyeong et al. 2015), and in Mapper applications from other fields (Lum et al. 177 

2013, Rizvi 2017). Important to note that the correlation distance in this form does not satisfy the 178 

triangle inequality and an appropriate alternative would be to use the square root of the current 179 

definition (Solo 2019, Chung et al. 2019). The triangle inequality can be helpful in accelerating 180 

the algorithms (Chen et al. 2023, Elkan 2003) and can be helpful in improving certain clustering 181 

metrics (Baraty et al. 2011), but these properties are not requirements for practitioners who wish 182 

to use Mapper for extracting insights from their data. For simplicity and because of its 183 

widespread use, we decided to use the correlation metric as defined, as 1 – Pearson 184 

correlation. 185 

 186 

The geodesic distance metric constructs a k-nearest neighbor (k-NN) graph and then considers 187 

the distance between points as hops on the constructed neighborhood graph. In this case, we 188 

used an updated k-NN graph, the penalized reciprocal k-nearest neighbor graph (PRKNNG). 189 
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 8 

The reciprocal variant of the k-NN algorithm limits neighbors to connections between points that 190 

the k-NN bidirectionally links, thereby reducing the effect of outliers (Qin et al., 2011). 191 

Additionally, to create a fully connected k-NN graph, we added connections between connected 192 

clusters with exponentially penalized weights (Bayá & Granitto, 2011). We showed in previous 193 

work (Geniesse et al., 2022) that this reciprocal and penalized variant of the k-NN algorithm 194 

works synergistically with Mapper. It’s important to note that this algorithm requires a distance 195 

metric (e.g., Euclidean, Cosine) to calculate the k-NN graph: 196 

 197 

𝑑𝑔𝑒𝑜𝑑𝑒𝑠𝑖𝑐(𝑥, 𝑦, 𝑑𝑖𝑠𝑡) = 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡−𝑃𝑎𝑡ℎ(𝑥, 𝑦, 𝑃𝑅𝐾𝑁𝑁𝐺𝑑𝑖𝑠𝑡) 198 

 199 

Where 200 

 𝑃𝑅𝐾𝑁𝑁𝐺𝑑𝑖𝑠𝑡 is the Penalized, Reciprocal k-Nearest Neighbor graph with weighted edges 201 

constructed using the distance metric 𝑑𝑖𝑠𝑡 202 

 203 

Picking a distance metric is important as it defines how the individual data points relate to each 204 

other, defining a topological space for Mapper. Within the algorithm, the metric space is 205 

essential for multiple steps. The filtering step involves representing the original space within a 206 

reduced space, where the distance metric is used for creating pairwise distances between all 207 

data points. During the partial clustering step, points are clustered based on the distances in the 208 

original high-dimensional space (Singh et al., 2007).  209 

 210 

2.1.2 Filtering 211 

During the second step of the Mapper algorithm, the data points are projected, using a filter 212 

function, to a reduced space (Fig. 1c). The filter function is applied on pairwise distances, and 213 

the resulting space is named the “lens.” Possible filters include dimensionality reduction 214 
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 9 

techniques (Fig. 1c top) that have been previously explored and analyzed within the 215 

neuroscience field (Cunningham & Yu, 2014). The data is usually reduced to a few (2 or 3) 216 

dimensions for practical and visualization purposes as the binning step scales exponentially with 217 

the number of dimensions. Any dimensionality reduction method can be used as a filter, but 218 

some have desirable properties and better preserve the topological features of the dataset. In 219 

this work, we compared multiple types of dimensionality reduction algorithms that transform the 220 

data to 2-dimensions (Table 1). As some selected algorithms (UMAP, Isomap, LLE, 221 

HessianLLE, Laplacian, and LTSA) construct k-NN maps and pairwise distances as a step 222 

within their algorithm, we applied them directly to the original dataset. In our example, the 223 

original 3-dimensional points are now represented by a 2-dimensional embedding (Fig. 1c top) 224 

 225 

Table 1: Dimensionality reduction algorithms. The ‘Code’ column represents the short-hand 226 
form used for the rest of the paper. The ‘Applied on’ column represents the usage of each 227 
algorithm as they were applied on either the pairwise distances or the original dataset space.  228 
 229 

Name Code Applied on 

(Input) 

Reference 

Classical Multidimensional Scaling CMDS Pairwise 

distances 

(Seber, 2009) 

Principal Component Analysis PCA Pairwise 

distances 

(Pearson, 1901) 

Linear Discriminant Analysis LDA Pairwise 

distances 

(Fisher, 1936) 

Factor Analysis FactorAnalysis Pairwise (Spearman, 1904) 
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 10 

distances 

Diffusion Maps DiffusionMaps Pairwise 

distances 

(Lafon & Lee, 2006) 

Sammon mapping Sammon Pairwise 

distances 

(Sammon, 1969) 

Uniform Manifold Approximation and 

Projection 

UMAP Original data (McInnes et al., 

2018) 

Isomap Isomap Original data (Tenenbaum et al., 

2000) 

Locally Linear Embedding LLE Original data (Roweis & Saul, 

2000) 

Hessian Locally Linear Embedding HessianLLE Original data (Donoho & Grimes, 

2003) 

Laplacian Eigenmaps Laplacian Original data (Belkin & Niyogi, 

2001) 

Local Tangent Space Alignment LTSA Original data (Z. Zhang & Zha, 

2004) 

t-distributed Stochastic Neighborhood 

Estimation 

t-SNE Pairwise 

distances 

(Hinton & Roweis, 

2002) 

 230 

 231 
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 11 

While there are even more options for dimensionality reduction, in this paper we focused on the 232 

main algorithms used with Mapper in the literature. We point the reader to a review for a 233 

comprehensive analysis and a systematic comparison of dimensionality reduction techniques 234 

(Van Der Maaten et al., 2009).  235 

 236 

To avoid dimensionality reduction and the related information loss altogether, our group recently 237 

developed a filter function that operates directly on the penalized k-NN graph constructed in the 238 

original high-dimensional space (Geniesse et al., 2022). On the trefoil knot example, the data 239 

points form a graph connecting each point to k reciprocal neighbors based on the distance 240 

metric picked (Fig. 1c bottom). For this technique, the lens (the reduced space) is represented 241 

by the geodesic distances constructed in the previous step, maintaining the local structure for 242 

each data point. As the locality is preserved, we define the Mapper that uses this technique as 243 

an Intrinsic Mapper. On the other hand, an Extrinsic Mapper uses a dimensionality reduction 244 

technique as a filter function. As the two types of lenses, i.e., intrinsic vs. extrinsic, are 245 

represented in different spaces, each requires its own binning algorithm. Even though the two 246 

mapper types use different filtering and binning steps (Fig. 1c-d arrows), they can use the 247 

same partial clustering and graph construction method. 248 

 249 

2.1.3 Binning 250 

The third step of Mapper consists of segmenting the resulting lens into smaller areas that cover 251 

the space. Depending on the filtering function used (Extrinsic Mapper using embeddings and 252 

Intrinsic Mapper using the k-NN graph), Mapper requires different binning algorithms. For the 253 

Extrinsic Mapper, the data contains points in a low-dimensional space, and the binning consists 254 

of separating the points into overlapping bins (Fig. 1d top). Embeddings in 2 dimensions are 255 

commonly segmented using rectangles, dividing each dimension into an equal number of 256 

segments. Any polygon (2-dimensions) or polyhedra (3-dimensions) can be used to cover the 257 
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 12 

reduced space, and we quantify the number of segments per dimension as the resolution 258 

parameter. For the Mapper algorithm to create meaningful shape graphs, the bins have to have 259 

a high degree of overlap, which we quantify by the gain parameter. Hence, the bin sizes and 260 

placements are determined by the resolution and gain parameters, collectively referred to as the 261 

scale parameters of binning. For the purpose of this analysis, we used 2-dimensional 262 

rectangles. Within the trefoil knot example, the space is divided into 16 bins with 33% overlap, 263 

denoting a resolution of 4 and a gain of 33% (Fig. 1d top). 264 

 265 

If the filter function used was a k-NN, then the lens is a graph, and the binning step should 266 

similarly separate the connected data points into overlapping bins (Fig. 1c and 1d bottom). To 267 

this end, the Intrinsic Mapper algorithm segments the constructed k-NN graph into subgraphs 268 

using the following algorithm (Geniesse et al., 2022). From the k-NN graph, a set number of 269 

nodes are selected using the Farthest Point Sampling (FPS) algorithm such that the geodesic 270 

distance between the selected nodes is maximized (Gonzalez, 1985). The resolution represents 271 

the number of picked nodes (a.k.a. landmarks). For each landmark, a set of nodes (or bin) is 272 

assembled around it, containing all the points that are within a certain distance from the 273 

landmark. Specifically, a data point 𝑥𝑖 is considered within a bin defined by landmark 𝑥, if 274 

𝐷′(𝑥𝑖 , 𝑥) ≤ 4𝜖 ⋅
𝑔

100
 , where 𝐷′ is the distance metric used, 2𝜖 is the minimum distance between 275 

any two landmarks, and 𝑔 is the gain parameter. The gain parameter approximates the overlap 276 

between the generated bins, and the values are picked from 0 to 100, representing a 277 

percentage. The bins can be viewed as N-dimensional spheres centered at the landmarks. The 278 

intrinsic mapper algorithm requires the resolution and gain parameters, referred as the scale 279 

parameters. On the trefoil knot example, the algorithm segmented the k-NN graph into four 280 

large bins (Fig. 1d bottom). The generated bins will contain a set of data points that will be 281 

further clustered in the following steps of the Mapper algorithm. 282 
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 13 

 283 

The resolution represents the number of landmarks chosen, while the gain defines the distance 284 

around each landmark to include within a bin (Fig. 1d bottom). Specifically, a data point 𝑥𝑖 is 285 

considered within a bin defined by landmark 𝑥, if 𝐷′(𝑥𝑖 , 𝑥) ≤ 4𝜖 ⋅
𝑔

100
 , where 𝐷′ is the distance 286 

metric used, 2𝜖 is the minimum distance between any two landmarks, and 𝑔 is the gain 287 

parameter.  288 

 289 

While both binning steps (extrinsic and intrinsic) are parameterized by resolution and gain, the 290 

parameters’ values have different connotations and might result in qualitatively different shape 291 

graphs. For this reason, a direct comparison between the shape graphs resulting from the two 292 

methods is rendered incompatible. Instead, in our analysis, we contrast the data point 293 

connectivity matrices that result from the Mappers of those binning strategies (Extrinsic Mapper 294 

vs. Intrinsic Mapper) (Supplementary Tables 1 and 2). An in-depth mathematical justification 295 

for the Intrinsic Mapper as a valid topological tool was performed in our previous paper 296 

(Geniesse et al., 2022). In this work, we provide further evidence of the equivalence of the two 297 

mappers based on their generated connectivity matrices over large spaces of parameter 298 

configurations. 299 

 300 

2.1.4 Partial Clustering 301 

Once the data points are assigned to bins, the fourth step of the Mapper algorithm involves 302 

clustering those data points within each bin (Fig. 1e). Importantly, the clustering algorithm is 303 

performed for the data points represented within the original feature space (Singh et al., 2007). 304 

The generated clusters constitute the nodes of the resulting Mapper shape graph. For the trefoil 305 

knot example, both binning strategies use the clustering step to generate the nodes of the graph 306 

(Fig. 1e). 307 
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 308 

The Mapper algorithm can use any hierarchical or nonhierarchical clustering technique (James 309 

et al., 2013), such as single linkage (Landau et al., 2011), average linkage, or density-based 310 

spatial clustering of applications with noise (DBSCAN) (Ester et al., 1996). This paper 311 

investigated the effects of single linkage and DBSCAN on the Mapper algorithm. For the single 312 

linkage algorithm, we used different numbers of bins to generate the distribution of the 313 

distances. For the DBSCAN algorithm, we employed a minimum of three points in a cluster with 314 

varying values of the epsilon parameter (Supplementary Table 1).  315 

 316 

2.1.5 Graph Creation 317 

As a final step, the Mapper algorithm links (adds edges) the created nodes that share at least 318 

one data point in their cluster (Fig. 1f). This step is made possible because the binning step 319 

provides a degree of overlap (gain), representing data points in multiple bins. The nodes and 320 

edges comprise the Mapper “shape graph,” representing the topology of the input dataset. The 321 

resulting shape graph is an undirected graph as the edges are bidirectional. On the trefoil knot 322 

dataset, this step results in the resulting Mapper shape graph (Fig. 1f). 323 

 324 

The graph creation step does not require any parameters. However, one alternative to the graph 325 

construction step is to limit the edges to bins that are adjacent to each other (van Veen et al., 326 

2019). For example, when using a 2-dimensional embedding with rectangle bins, a node will be 327 

limited to the eight directly adjacent bins, even though there might be more overlapping bins 328 

(when 𝑔𝑎𝑖𝑛 > 50%). This variation can only be performed in Extrinsic Mapper settings, and the 329 

shape graph resembles a grid-like pattern. 330 

 331 

Another alternative is constructing a directed shape graph based on the temporal progression of 332 

the data points (M. Zhang, Chowdhury, et al., 2022). This “Temporal Mapper” requires using a 333 
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different filter function and a modified binning step, but we did not analyze its application in this 334 

work. 335 

2.2 Datasets 336 

2.2.1 Dataset 1: Simulated temporal structure using a biophysical network model  337 

To generate gold standard ground truth transitions of brain activity, we simulated BOLD activity 338 

using a dynamical mean-field model of a human brain. A complete description of the model, its 339 

validation, and a detailed analysis of its properties can be found in previous work (M. Zhang, 340 

Sun, et al., 2022) We used a biophysical network model that adapted the reduced Wong-Wang 341 

(Deco et al., 2014, 2013; Wong & Wang, 2006) model in the form of Wilson-Cowan model 342 

(Wilson & Cowan, 1972, 1973) to improve multistability (M. Zhang, Sun, et al., 2022). The model 343 

constructs a large-scale network (global model, Fig. 2b) using nodes corresponding to 344 

anatomical regions in the human brain based on 66-region parcels (Deco et al., 2013). The 345 

network's edge weights between the associated brain regions are estimated using structural 346 

connectivity data from the Human Connectome Project (Van Essen et al., 2013). Each node is 347 

modeled as a pair of excitatory (E) and inhibitory (I) populations with four connections 348 

describing their influence: 𝑤𝐸𝐸 modulating 𝐸 population exciting itself; 𝑤𝐸𝐼 modulating 𝐸 349 

population exciting the 𝐼 population; 𝑤𝐼𝐼 modulating 𝐼 population inhibiting itself; 𝑤𝐼𝐸 modulating 350 

𝐼 population inhibiting the 𝐸 population (local model) (Fig. 2a). The state variables 𝑆𝐸 and 𝑆𝐼 351 

describe the activity of the two populations within each node, and physically, they represent the 352 

fraction of open synaptic channels in each population. The long-range connections of the global 353 

model are between the excitatory populations of each node and are modeled by the static 354 

variable 𝐶𝑖𝑗. Furthermore, the overall strength of those long-range connections is scaled by a 355 

global coupling parameter 𝐺. To generate the BOLD signal, the neural activity of each modeled 356 
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brain region, represented by the local excitatory population activity 𝑆𝐸, was fed into the 357 

traditional Balloon-Windkessel model (Buxton et al., 1998).  358 

 359 

To generate the simulated dataset, the dynamical system was left to run for a period of time, 360 

recording its activity while modulating the global coupling parameter 𝐺. The variation of the 361 

coupling parameter between two extreme values determined the temporal neural dynamics that 362 

we want to extract using Mapper (Fig. 2c). Hence, we segment the time course of the 363 

simulation into eight regions of four types (Fig. 2d) based on the value of the 𝐺 parameter. The 364 

Stable Low and Stable High state types are the time regions where 𝐺 is fixed at either a low or a 365 

high value, respectively. In between the stable regions when 𝐺 is either increasing or 366 

decreasing over time, the regions are considered as either the Transition Up or Transition Down 367 

state types, respectively (Fig. 2d). Each state type is repeated twice to a total of eight regions of 368 

varying length (Fig. 2c-d). The two stable states represent two global stable attractors of the 369 

dynamical system and the jump between the states is forced by different values of 𝐺 at different 370 

time points during the transition states. Due to the cyclical nature of the state changes, the 371 

expected dynamical topology represents a circle with a preferred direction (Fig. 2e). 372 

 373 

The global coupling parameter 𝐺 was varied between values 1.1 and 5.0 where it was constant 374 

for a duration of 100 seconds each (Stable Low and Stable High states). The transitions were 375 

performed in 200 seconds each (Transition Up and Transition Down states). As each state was 376 

repeated, the total simulated time course of the data ended up at 1200 seconds (20 minutes). 377 

Using a Repetition Time of 0.72 seconds, we generated 1667 data points for each one of the 66 378 

brain regions of the model. 379 

 380 

Figure 2: Datasets description. (a-e) Dataset 1: Simulated BOLD. (a) The local model 381 
connectivity between the pair of populations, excitatory (E) and inhibitory (I), is defined by four 382 
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connections: 𝑤𝐸𝐸, 𝑤𝐸𝐼, 𝑤𝐼𝐸, and 𝑤𝐼𝐼. (b) The global model defines the connectivity profile 383 
between the nodes, connecting the excitatory populations. (c) The timeline of values of the 384 

global coupling parameter value 𝐺, throughout the course of the simulation, with state types 385 
denoted by the color of the region. (d) The four state types of the simulation time course. The 386 
color of each state type is used in plots (a) and (e). (e) A transition graph representation 387 
between the four state types. (f-h) Dataset 2: Continuous Multi-Task Paradigm (CMP), the 388 
“real” dataset. (f) Representation of the timeline of four tasks in the CMP dataset: Resting 389 
state, Working Memory, Video, and Math. Each task was performed for 180 minutes with 12 390 
seconds of instruction in between. The total duration of the scan was 25 minutes and 24 391 
seconds. (g) Example of a constructed Mapper shape graph on subject SBJ07 using an 392 
Extrinsic Mapper (geodesic Euclidean metric, k=12, CMDS embedding, resolution=30, 393 
gain=60%, Linkage clustering). (h) The normalized degree, averaged over subjects, was 394 
extracted from the Mapper shape graphs.  395 
 396 

Simulated dataset with added noise (degraded signal-to-noise ratio) 397 

We extended the simulated dataset by adding noise to the generated time series and creating a 398 

new dataset to be analyzed by Mapper. Noise was added to mimic the general conditions of 399 

functional MRI where magnet inhomogeneities, head movement, and acquisition artifacts 400 

diminish the signal-to-noise (SNR) ratio. For adding noise to the dataset, we used the ‘brainiak’ 401 

package (Ellis et al., 2020) that generates white noise based on the extracted properties of the 402 

input dataset: drift noise, auto-regressive/moving-average noise, and system noise. Using those 403 

generated noise vectors, we scaled and added noise to each voxel activation in order to have a 404 

target SNR. For example, for a target SNR of 0.5, we scaled the noise vectors to have a 405 

standard deviation of twice the amount of the signal’s amplitude. We generated the simulated 406 

dataset with added noise for SNR values of [10.0, 5.0, 3.3, 2.5, 2.0, 1.3, 1.0, 0.8, 0.6, 0.5]. This 407 

process gave us an SNR control knob for testing its effect on different distance metrics on the 408 

Mapper shape graph. 409 

 410 

Simulated dataset with reduced sampling  411 

To further understand the limits of Mapper, we degraded the signal by downsampling the 412 

simulated BOLD response. Down-sampling mimics a longer Repetition Time (TR) for fMRI 413 

acquisition. We selected every Nth time sample to create a reduced-sampling dataset and 414 
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dropped the other samples. An initial analysis of the Mapper shape graphs created from this 415 

initial reduced dataset revealed that the dropped time points were essential for the dynamical 416 

trajectory as Mapper failed to capture the temporal structure. We observed this failure for all 417 

distance metric types and all binning strategies. We applied temporal smoothing before 418 

reducing the sampling rate to circumvent the loss of essential temporal structure in the data. 419 

The smoothing was applied as a convolution of a rectangular function of 4 TRs over the time 420 

points. We generated the temporally smoothed reduced-sampling dataset, selecting every Nth 421 

sample for three values of N: [1, 2, 3], denoting final TR values of [0.72, 1.44, 2.16] seconds.  422 

2.2.2 Dataset 2: Real temporal structure during multi-task paradigm 423 

As our second dataset, we used a previously collected fMRI dataset with a complex temporal 424 

structure (Gonzalez-Castillo et al., 2019). The study uses a Continuous Multitask Paradigm 425 

(CMP), scanning participants while performing an array of tasks (Fig. 2f). We transferred the 426 

dataset from the XNAT Central public repository (https://central.xnat.org; Project ID: 427 

FCStateClassif). All participants provided informed consent, and the local Institutional Review 428 

Board of the National Institute of Mental Health in Bethesda, MD, reviewed and approved the 429 

data collection. 430 

 431 

The CMP dataset contains de-identified fMRI scans with their associated behavioral 432 

measurement from 18 participants. The complete details of the paradigm are presented in 433 

(Gonzalez-Castillo et al., 2019). As described here briefly, the participants performed four 434 

different tasks, each repeated once, while being scanned continuously inside an MRI machine. 435 

The four types of tasks were classified as Rest, Working Memory, Math/Arithmetic, and Video; 436 

each being carried out for 180 seconds, with an extra 12-second instruction period (Fig. 2f). As 437 

each task was repeated, the final eight task blocks appeared in a predetermined random order, 438 

similar for all participants. During the Rest task, each participant was instructed to fixate on a 439 
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crosshair at the center of the screen and let their mind wander. For the Working Memory task, 440 

the participants were presented with geometric shapes every 3 seconds and were instructed to 441 

signal (by pressing a button) if the current shape appeared two shapes prior (2-back design). 442 

For the Math/Arithmetic task, the participants were sequentially presented with 36 total 443 

arithmetic operations, while each one involved applying two operators (addition and subtraction) 444 

on three numbers between 1 and 10. During the Video task, the participants watched a video of 445 

a fish tank from a single stationary point of view with different types of fish swimming into and 446 

out of the frame; the participants were instructed to press a button when a red crosshair 447 

appeared on a clown fish and another when it appeared on any other type of fish.  448 

 449 

The fMRI dataset was acquired on a Siemens 7 Tesla MRI scanner equipped with a 32-channel 450 

receiver coil (Nova Medical) using a whole-brain echo planar imaging (EPI) sequence (repetition 451 

time [TR] = 1.5 s, echo time [TE] = 25 ms, and voxel size = isotropic 2 mm). A total of 1017 time 452 

frames were acquired for each participant. 453 

 454 

Functional and anatomical MR images were preprocessed using the Configurable Pipeline for 455 

the Analysis of Connectomes (C-PAC version 0.3.4; https://fcp-456 

indi.github.io/docs/user/index.html). Complete details about the processing are provided by 457 

(Saggar et al., 2018). Briefly, both anatomical and functional scans were registered into the 458 

MNI152 space (using ANTS) after registering each participant's functional scan to match its 459 

corresponding anatomical scan. Further, the fMRI data preprocessing steps included slice 460 

timing correction, motion correction (using the FSL MCFLIRT tool), skull stripping (using the 461 

FSL BET tool), grand mean scaling, spatial smoothing (FWHM of 4mm), and temporal band-462 

pass filtering (between 0.009 Hz and 0.08 Hz). Additionally, nuisance signal correction was 463 

done on the data by regressing out (1) linear and quadratic trends; (2) physiological noise 464 

(mean time-series of white matter and cerebrospinal fluid); (3) derived motion noise from 24 465 
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motion parameters (the six motion parameters, their derivatives, plus each of these values 466 

squared); and (4) signals extracted using the CompCor algorithm (five selected components). 467 

Finally, the resulting voxels were averaged to 3 mm MNI space and further fit within the 375 468 

regions of interest (ROIs) with 333 cortical parcels (Gordon et al. 2016) and 42 sub-cortical 469 

parcels from the Harvard-Oxford atlas (Shine et al., 2016).  470 

 471 

2.3 Evaluating Mapper-generated graphs 472 

To examine Mapper parameters and the quality of the final Mapper graph, we devised general 473 

criteria for shape graph validation and goodness-of-fit measures (GOF) for simulated and real 474 

datasets. The Mapper-generated graph (or shape graph) validation is a general procedure to 475 

verify that the resulting graph has a minimal amount of structure and is not a degenerate case. 476 

The graph validation defines the boundaries of the Mapper parameters within which there is a 477 

topological structure to be examined. Within the validation boundaries, we use GOF measures 478 

to ascertain if the generated shape graph represents the correct topological structure. The GOF 479 

measures take into account the expected properties of the dynamical structure for each dataset. 480 

2.3.1. Validating Mapper-generated shape graphs 481 

Drawing on prior knowledge and expectations of shape graphs (Geniesse, Chowdhury, and 482 

Saggar 2022), we developed three metrics that validates the coverage, autocorrelation, and 483 

complexity captured. We test if the Mapper shape graph: (i) employs most of the input dataset 484 

(coverage 𝛽 > 70%); (ii) captures more than trivial autocorrelation dynamics (non-485 

autocorrelated nodes 𝛼 ≥ 15%); (iii) has a non-trivial structure (pairwise distances entropy 𝑆 ≥486 

2). We define the Mapper shape graph coverage (𝛽) as the percentage of data points in the 487 

largest connected component of the shape graph. To measure the influence of autocorrelation 488 

dynamics, we count the percentage of nodes (𝛼) that describe data points over the 489 
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autocorrelation time threshold, 𝜏. We chose 𝜏 = 11𝑠, as it’s generally expected to be the 490 

hemodynamic response function peak for the BOLD neural response (Lindquist et al., 2009). In 491 

addition to the autocorrelation and coverage properties, which are also described in the 492 

previous study by Geniesse et al. (2022), we introduce a novel metric to remove degenerate 493 

shape graphs. We observed that for some Mapper configurations, the shape graph nodes 494 

connect into large cliques, destroying all topological properties of the input dataset. Hence, to 495 

prevent this extreme case, we quantify and invalidate the shape graphs that have a low entropy 496 

(𝑆) (Shannon, 2001) of pair-wise distances between all nodes of the graph. The threshold 497 

values of the three criteria were chosen by manually inspecting the resulting shape graphs on a 498 

small subset of each dataset and further calibrated to reflect the broad transition into the 499 

degenerate cases. In conclusion, if a Mapper shape graph passes the three criteria (𝛼 ≥ 15%, 500 

𝛽 > 70%, and 𝑆 ≥ 2), we consider the graph as valid and we proceed with verifying its 501 

topological properties (as described further).  502 

2.3.2 Goodness-of-fit (GOF) measures for the simulated dataset 503 

For the simulated dataset, we used a biophysical network model to generate dynamical 504 

transitions of whole-brain activity. These transitions follow the simulated underlying dynamics, 505 

creating a circular trajectory represented by a circle with a preferred direction (Fig. 2e). Thus, to 506 

quantify if the resulting shape graph correctly represents the expected transition graph for the 507 

simulated data, we defined a “circle-ness” criterion as a GOF measure. Intuitively, a good-fit 508 

shape graph should contain nodes that connect each state only with its neighboring states (a 509 

graph resembling Fig. 2e, but with bidirectional arrows). More specifically, the low and high 510 

states should be connected through the two transition states and not with a direct edge. The 511 

algorithm to test if a Mapper shape graph satisfies the circleness criterion is explained as 512 

follows. First, we mark each node of the Mapper shape graph as one of four states: stable-low, 513 

transition-up, stable-high, and transition-down, based on the states of the data points it contains. 514 
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Then, we create the subgraph 𝐺↑ as a copy of the shape graph with the exclusion of the nodes 515 

marked as state transition-down. We test if the subgraph 𝐺↑ contains a path between nodes 516 

describing stable-low and stable-high states. Such a path should only contain nodes that are 517 

transition-up. Similarly, we test the subgraph 𝐺↓ (the copied shape graph that excludes the 518 

transition-up nodes) if it contains a path between the stable-low and stable-high states using 519 

only transition-down nodes. If both subgraphs 𝐺↑ and 𝐺↓ contain the described paths between 520 

stable-low and stable-high states, then the generated Mapper shape graph passes the 521 

circleness criterion, marking the graph as correctly fitting the simulated dataset.  522 

2.3.3 Goodness-of-fit measures for the real fMRI dataset 523 

The real neuroimaging dataset has an intricate structure with more complex topological 524 

features, previously described in Saggar et al. (2018). The authors showed that the transitions 525 

between the four cognitive tasks can be extracted from the degree plot of the Mapper shape 526 

graph without any a priori knowledge of the transition dynamics. We quantify the fit of this 527 

representation of the intrinsic dynamics by examining Mapper’s success in identifying the 528 

transitions, measured by the delay between the extracted and the expected transitions. The 529 

“average delay time" metric measures the time difference between extracted state changes from 530 

the Mapper shape graph and the “instructions” segments delimiting the four cognitive tasks: 531 

Resting state, Memory, Video, and Math (Fig. 2f). 532 

 533 

To extract the transitions from the Mapper configuration (Saggar et al. 2018), we first generate 534 

the Mapper shape graph (e.g., Fig. 2g). As each shape graph node contains a set of time 535 

points, we can construct the Temporal Connectivity Matrix (TCM) of similarity between all 536 

timepoints. In other words, time points that belong to the same node or are connected by an 537 

edge in the Mapper graph are considered highly similar. Averaging the TCM on one dimension, 538 

we extract the average temporal similarity of time points, referred to as the normalized degree 539 
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(e.g., Fig. 2h). As each one of the four cognitive tasks has different whole-brain activations, they 540 

end up being represented by different nodes of the Mapper shape graph (Fig. 2g), exhibiting 541 

different degrees of time point similarities (Fig. 2h). To find the abrupt changes in the 542 

normalized degree timeline, we employ a changepoint detection algorithm, implemented in 543 

MATLAB by the function 𝑓𝑖𝑛𝑑𝑐ℎ𝑎𝑛𝑔𝑒𝑝𝑡𝑠 (Killick et al., 2012). The abrupt changes detected 544 

within the normalized degree represent the extracted transition time points (e.g., Fig. 4a). 545 

 546 

We define “average delay time” as the average timing difference between the extracted 547 

transitions and the closest instructions segment. If the Mapper algorithm fails to extract a 548 

transition between two states, it would have a large average delay (e.g., Fig 4a bottom rows). 549 

If the average delay time of a Mapper result is smaller than 𝛿, then we consider the generated 550 

Mapper shape graph as passing the GOF metric for the real dataset. In other words, the Mapper 551 

successfully extracted the expected topology of the real dataset if it correctly separates the four 552 

cognitive tasks with at most 𝛿 average delay. For the main analysis, we used 𝛿 = 12 seconds, 553 

but we observed similar results for 𝛿 = 20 seconds (Supplemental Fig. 2d). 554 

 555 

2.4 Data and code availability 556 

The synthetic datasets used in this work and all the associated code will be available upon 557 

publication at this address: https://github.com/braindynamicslab/demapper . The fMRI data used 558 

in this study is available for download at the XNAT Central public repository 559 

(https://central.xnat.org; Project ID: FCStateClassif). 560 

 561 

The code contains two separate code packages: (1) the “DeMapper“ library and (2) the code to 562 

replicate this paper’s findings. The deconstructed mapper library, or “DeMapper,” is a MATLAB 563 

toolbox designed for the application of Mapper on neuroimaging datasets. Its design principles 564 
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and usage information are detailed further in Section 3.5. The second part of the released 565 

software repository is the code to replicate the findings of this paper. The code makes use of the 566 

aforementioned DeMapper library and uses both MATLAB and Python programming languages 567 

to generate the figures and statistics. 568 

3. Results 569 

3.1 Similarity between individual time frames 570 

The first step of the Mapper algorithm is computing pairwise distances between the input data 571 

points. While this is a straightforward computational task, choosing a distance metric has wide 572 

implications because it defines the relationship between any two points for the rest of the 573 

algorithm. Finding a correct similarity metric (i.e., 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 1 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) between two 574 

samples of neural activity is a long-studied topic in neuroscience (Bobadilla-Suarez et al., 2020). 575 

The goal of this paper is not to solve the issue but rather to reveal the effects of choosing 576 

different distance metrics for the Mapper algorithm. Here we analyzed three broad measures of 577 

distances: angle-based measures (Cosine and Correlation), magnitude measures (Euclidean, 578 

Cityblock, and Chebychev) (Bobadilla-Suarez et al., 2020), and geodesic metrics.  579 

 580 

3.1.1 Simulated dataset 581 

For the simulated dataset, we used the “circleness criterion” as a goodness of fit metric to 582 

evaluate if Mapper correctly capture the circle topology of the data (see Methods). While varying 583 

the distance metrics, we examined the distribution of valid results for several combinations of 584 

other Mapper parameters (i.e., resolution and gain). Fig. 3a shows two examples of Mapper 585 

shape graphs, one that fails (top) and one that satisfies (bottom) the circleness criterion. With 586 

the correlation distance metric, the example shows a shape graph that created high similarity 587 
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between transition-up and transition-down states (Fig. 3a top). This reversal of the expected 588 

connectivity between states leads to the rejection of this shape graph as a correct topological 589 

representation of the input. With a Euclidean distance metric, the example shows a shape graph 590 

that correctly reveals the expected circle topology (Fig. 3a bottom). For a selection of different 591 

resolution and gain parameters, the geodesic Euclidean distance metric (with k=12) yields 19 592 

out of 25 graphs that preserve the expected features (Fig. 3b center). We assessed the shape 593 

graphs of using other distance metrics on the same grid of resolution and gain parameters (Fig. 594 

3b). Alternating the k-parameters for the geodesic distances, the different configurations of the 595 

distance metrics yield a distribution of Mapper shape graphs that pass the criterion (Fig. 3c). 596 

Choosing a distance metric has a significant impact on the performance of the topological 597 

extraction on the simulated dataset (one-way ANOVA F(4, 76)=7.89, p=2.3 * 10-5). Specifically, 598 

the Euclidean and Cosine geodesic distance metrics generally perform better (Fig. 3c). 599 

Furthermore, we observe no significant difference between the performance of magnitude and 600 

angle metrics (two-sample t-test t(79)=-0.08, p = 0.93).  601 

 602 

We observe that the average performance of using geodesic distances (averaged over k-603 

values) is higher than its relative non-geodesic distance performance, but it fails the significance 604 

test due to few measurements (paired t-test t(4)=2.26, p=0.09). From the analysis, we note that 605 

the geodesic distance metrics require a minimal k-value: Euclidean and Cosine distance metrics 606 

require a 𝑘 ≥ 6. In contrast, the City Block distance metric requires 𝑘 ≥ 32 (Supplementary Fig. 607 

S1). Similar results were observed for the intrinsic mapper using a k-NN lens instead of 608 

reducing the embedding space using a dimensionality reduction technique (Supplementary Fig. 609 

S1). 610 

 611 

We also evaluated the effect of increasing noise in the data by analyzing the top distance 612 

metrics (Euclidean, Cosine, and City Block) on the simulated dataset with decreasing signal-to-613 
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noise ratio (SNR). We constructed this noisy dataset by progressively adding white noise to all 614 

regions of the simulated dataset (see Methods). As expected, we observe a general decrease in 615 

performance as we decrease the SNR. The rate of decrease is more pronounced in geodesic 616 

distance metrics compared to non-geodesic metrics (paired t-test t(32)=-3.23, p=0.0029) (Fig. 617 

3d, Supplementary Fig. S2a). This suggests that non-geodesic distances are more robust to 618 

white noise in this simulated dataset. Moreover, the geodesic angle metrics (cosine and 619 

correlation) fail to construct valid mapper graphs once we introduce noise (Supplementary Fig. 620 

S2a). 621 

 622 

Further, we also evaluated the effect of a reduced sampling rate (or an increased repetition 623 

time). We observe that the performance decreases as we decrease the sampling rate across all 624 

distance metrics, showing no difference between them (Fig. 3e). As seen in the general case, 625 

the average performance of using geodesic distances (averaged over k-values) is higher than 626 

its relative non-geodesic distance performance (paired t-test t(14)=4.57, p=0.00044). This 627 

relative performance improvement when using geodesic distances is observed in all metric 628 

spaces (correlation and Chebyshev metrics are shown in Supplementary Fig. S2c). 629 

 630 

Figure 3: Quantifying similarity metrics performance on the simulated dataset. (a) 631 
Example of two Mapper shape graph results. Top: using the correlation distance (resolution=20, 632 
gain=60%). This shape graph is classified as an “incorrect Mapper result” because the 633 
“transition up” nodes do not define a path between nodes of stable high and low states. Bottom: 634 
using the Euclidean distance (resolution=10, gain=60%). This shape graph is valid as it passes 635 
the Mapper shape graph validation and GOF metrics for the simulated dataset. (b) The 636 
performances of different distance metrics are shown as a heatmap on a resolution-by-gain 5x5 637 
matrix. Each resolution-gain parameter choice within the heatmap represents the Mapper 638 
algorithm's success in preserving the circular state trajectory's topological and temporal 639 
features, passing the validation and GOF criteria. The total count of such correct Mapper results 640 
is presented as an orange letter on the right of each heatmap. The two examples in (a) have 641 
two squares in their respective heatmaps, defining their performance. (c) The five distance 642 
metrics show different performances in capturing the expected circle trajectory, with the 643 
Euclidean and Cosine geodesic distances outperforming the rest. The non-geodesic distances 644 
are represented as a purple “X” marker for each distance metric. The line with *** denotes a 645 
one-way ANOVA with p < 10-5. (d) As we decrease the signal-to-noise ratio, the performance 646 
decreases for all distance metrics, with the Cosine distance decreasing the most, revealing a 647 
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sensitivity to noise. (e) With a decrease in the sampling rate of the simulated dataset, we see a 648 
decrease in the performance for all distance metrics. The distributions in subplots (c), (d), and 649 
(e) are shown as box plots. 650 
 651 

3.1.2 Real dataset 652 

For the real dataset, we evaluated the distance metrics based on the average delay between 653 

the expected and the extracted transitions (see Methods). For example, using the geodesic 654 

Euclidean distance (with k=12), Mapper extracted the transitions between the eight states with 655 

an average delay of 5.7 seconds (Fig. 4a top row). In contrast, using the Euclidean distance 656 

(non-geodesic), Mapper failed to extract the 7th transition between the Math and Video states 657 

(Fig. 4a bottom row). Aggregating over multiple shape graphs on the real dataset, the choice 658 

of distance metrics has a significant impact on the performance of the topological extraction 659 

(one-way ANOVA F(4,81)=17.64, p=2.04 x 10-10) (Fig. 4b). Moreover, the magnitude metrics 660 

outperform the angle metrics (two-sample t-test t(84)=8.42, p=9.65 x 10-13), without a clear 661 

magnitude metric performing best (one-way ANOVA F(2,49)=0.35, p=0.71) (Fig. 4b). Those 662 

findings are replicated when we use a higher delay threshold of 20 seconds (see Methods, 663 

Supplementary Fig. S2d): choice of distance metrics impacts performance (one-way ANOVA 664 

F(4,81)=39.31 p=3.6 x 10-18), with the magnitude metrics overperforming angle metrics (two-665 

sample t-test t(84)=12.36 p=1.64 x 10-20), without a difference between the magnitude metrics’ 666 

performance (one-way ANOVA F(2,49)=1.01, p=0.37). Furthermore, the average performance 667 

of using geodesic distances (averaged over k-values) is higher than its relative non-geodesic 668 

distance performances (two-sample t-test t(9)=2.52, p=0.036) but fails to reach significance for 669 

the higher delay threshold of 20 seconds (two-sample t-test t(9)=0.88, p=0.40). 670 

 671 

To validate the GOF measurement, we calculated the statistics of the average delay after 672 

temporally shuffling the fMRI dataset. The best fit is produced by a low average delay, 673 

representing small differences between the expected and the extracted transitions. We 674 
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generated the shuffled dataset by first splitting the time course into blocks of seven timeframes 675 

(~ 10.5 seconds), and then shuffling those blocks similarly for all participants. This random 676 

shuffling procedure preserves the relationship between the ROIs and within-block temporal 677 

structure (e.g., auto-correlation) but dismantles the global temporal structure, which the GOF 678 

measure is supposed to detect. The average delay times for 96 Mapper shape graphs 679 

generated from the temporally shuffled dataset (after ten shuffling procedures) has a minimum 680 

of 29.71 seconds, median of 59.35 seconds, and average of 70.63 seconds. As it has no global 681 

temporal structure, the shuffled dataset has Mapper shape graphs with high average delays, 682 

representing a bad fit of the expected transitions. Hence, the average delays from the shuffled 683 

dataset define an upper limit for average delays measurements extracting the global temporal 684 

structure. For comparison, the same 96 Mapper shape graphs on the real fMRI has average 685 

delay times between 2.57 and 22.42 seconds with a median and mean of 6.36 and 8.47 686 

seconds respectively. We observe that all valid Mapper shape graphs have average delays 687 

below the upper limit of 29.71 seconds, correctly characterizing the transitions of the real 688 

dataset.  689 

 690 

Figure 4: Quantifying similarity metrics performance on the real dataset. (a) Four 691 
examples are presented based on different distance metrics for generating the Mapper graph. 692 
The examples are for Mapper Graphs generated with Resolution=20 and Gain=50. The x-axis 693 
timeline is divided into eight regions, colored based on the task performed during that time. The 694 
timeseries shown as a light black line is the normalized degree of the Mapper shape graph. The 695 
timeseries was used to extract transitions, marked as vertical black lines. The dashed blue lines 696 
between the extracted transitions represent the level of average normalized degree. The large 697 
red circles with dashed lines highlight regions that failed to be extracted as a transition. The 698 
match between the extracted and the expected (instructions segments, see Methods) is 699 
quantified as an average delay. The first two examples have a short delay (geodesic Euclidean 700 
distance with K=12: 5.7 seconds; geodesic Cityblock distance with K=12: 3.7 seconds), while 701 
the last two examples have a large delay due to the missed predictions (geodesic Correlation 702 
distance with K=12: 42 seconds; non-geodesic Euclidean distance: 21 seconds). (b) For 703 
multiple values of resolution, gain, and K-values, the performance of different distance metrics is 704 
shown as a percentage of average delays smaller than 12 seconds. The geodesic distributions 705 
are shown as boxplots. The non-geodesic distances are represented as a purple “X” marker for 706 
each distance metric. The line with *** denotes a one-way ANOVA with p < 10-10.  707 
 708 
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3.2 Effect of the embedding algorithm on the Mapper results 709 

The traditional Mapper algorithm (i.e., the extrinsic Mapper) represents data points in a lower 710 

dimensional space. This embedding is often created using dimensionality reduction techniques 711 

with different assumptions about the represented topology and the relevant features. We 712 

measured the performance of several embedding algorithms on the simulated and real 713 

neuroimaging datasets. We count the Mapper graphs that fulfill the GOF criteria with different k-714 

values (see Methods) for each embedding algorithm, generating a distribution (Fig. 5).  715 

 716 

For the simulated dataset, we observe that multiple algorithms (CMDS, PCA, LDA, 717 

FactorAnalysis, Sammon, Isomap) perform almost identically (Fig. 5a). While UMAP has low 718 

performance, we see that it requires low values of the k-parameter (i.e., 𝑘 ≤ 6), above which the 719 

performance drops to zero (Fig. 5b). Although, this inconsistency of the k-parameter is due to 720 

the UMAP algorithm performing its topological deconstruction. Moreover, the t-SNE embeddings 721 

fail to extract the topological features for the simulated dataset (Fig. 5a). Examples of the 722 

created shape graphs using t-SNE demonstrate that while the local structure is preserved, it 723 

fails to construct the whole circular representation (Supplementary Fig. S4), thus failing the 724 

GOF measure for all values of the k-value. 725 

 726 

For the real dataset, the CMDS embedding algorithm constructs better representations than the 727 

other embedding algorithms applied on pairwise inputs (Fig. 5c). Comparing the non-pairwise 728 

algorithms, we see Locally Linear Embeddings (LLE) and Isomap having better representations. 729 

As seen in the simulated dataset, the UMAP algorithm requires lower values of the k-parameter 730 

to construct good representations (Fig. 5d). In this case, the t-SNE algorithm has more success 731 

in creating shape graphs that pass the validation criterion.  732 

 733 
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An alternative to embedding algorithms is the intrinsic mapper algorithm, which performs the 734 

topological analysis in the original space (Geniesse et al., 2022). While the Intrinsic Mapper 735 

algorithm has different parameters (resolution represents the number of landmarks instead of 736 

the number of bins), it generates remarkably similar Mapper shape graphs (Supplementary Fig. 737 

S5). The extrinsic and intrinsic mappers produce similar distances between time frames, as 738 

measured by their corresponding temporal connectivity matrices (TCMs) (Supplementary Fig. 739 

S6). Moreover, the intrinsic mapper projects the data to a space that resembles a high 740 

dimensionality embedding (Geniesse et al., 2022), which would not be achievable with extrinsic 741 

mapper because of the exponential explosion of bins (i.e., for resolution R and dimensions d, 742 

we have Rd bins). Hence, the intrinsic mapper allows for faster processing of bins/landmarks for 743 

clustering and creating the shape graph nodes as we have increasingly more nodes 744 

(Supplementary Fig. S6).  745 

 746 

Figure 5: The effect of the embedding algorithm choices for constructing the Mapper 747 
Shape graphs. (a) Performance of Mapper on the simulated dataset using different embedding 748 
algorithms, where each box plot corresponds to the distribution of shape graphs that pass the 749 
GOF criterion (based on different k-values). The top six box plots (denoted in green) represent 750 
dimensionality reduction techniques applied on pairwise distances (CMDS, PCA, LDA, 751 
FactorAnalysis, DiffusionMaps, Sammon), with the distribution based on the geodesic k-value 752 
used for the distances. The following six box plots (denoted in orange) represent dimensionality 753 
reduction techniques applied on the original space (UMAP, Isomap, LLE, HessianLLE, 754 
Laplacian, LTSA), with the distribution based on the k-value used for applying the embedding 755 
algorithm on the input dataset (skipping the pairwise distances). The bottom three box plots 756 
(denoted in purple) represent the distribution of performance of the stochastic algorithm (t-SNE) 757 
using different perplexity values (5, 20, 50), with the distribution of a geodesic k-value. (b) A few 758 
selected algorithms’ performance was broken down based on different k-values on the 759 
simulated dataset. (c) The performance of Mapper on the real dataset using the same 760 
embedding algorithms as subplot (a). (d) The same selected algorithms’ performance is broken 761 
down on a set of k-values on the real dataset. The performance distributions in (a) and (c) are 762 
shown as box plots. 763 

3.3 The appropriate scale of reduction for neuroimaging data 764 

The Mapper graph attempts to reveal the shape of the high-dimensional input data in a low-765 

dimensional space. As for any algorithm that compresses information, the representation can be 766 
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underfitting or overfitting. In the context of a topological analysis, we expect the representation 767 

to preserve the topological features with the right amount of detail. The resolution and gain 768 

parameters during the binning step of the Mapper algorithm determine the size of the shape 769 

graph (Fig. 1d). Selecting the appropriate scale of reduction (i.e., resolution and gain) is a 770 

necessary step for configuring Mapper to extract the topological and temporal features of any 771 

time-series dataset. Different scale parameters (i.e., resolution and gain) can result in 772 

qualitatively different shape graphs (Fig. 6a-c).  773 

 774 

3.3.1 Simulated dataset 775 

Starting with the simulated data, Mapper graphs with low gain (Extrinsic Mapper with resolution 776 

20, gain 50%) do not capture the circular pattern of the neural input data (Fig. 6a). This failure is 777 

due to the discontinuity within the transition-up timeframes. Because of the missing edges in the 778 

result, the topological feature of the input dataset was not preserved, and we mark this result as 779 

a failure of the parameter choices. In contrast, the Mapper configuration with an increased gain 780 

value (Extrinsic Mapper with resolution 20, gain 70%) creates a shape graph with correct 781 

circular topological features (Fig. 6b). This combination of resolution and gain creates a shape 782 

graph that represents the correct transition between the time points as it was originally 783 

generated. Moreover, a Mapper with an even higher gain (Extrinsic Mapper with resolution 20, 784 

gain 90%) creates a highly connected graph that directly links the stable-low and stable-high 785 

states (Fig. 6c). This high connectivity loses the specificity of the topological structure by 786 

bypassing the temporal profile of individual timeframes. As we mark this result as a failure, we 787 

can now intuitively appreciate the boundary of parameter combinations. 788 

 789 

We reveal a distribution of valid shape graphs where the resolution and gain parameters are 790 

highly correlated (Fig. 6d). Aggregating on multiple k-values (for the geodesic distance) results 791 

in a similar correlation between resolution and gain (Fig. 6e). For high resolution or low gain, the 792 
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shape graphs lose the topological features, showing a discontinuity between stable-low and 793 

transition-up states (Fig. 6e section A, Fig. 6a). On the other side, for high gain or low 794 

resolution, the result loses the temporal structure and fully connects the shape graph (Fig. 6e 795 

section C, Fig. 6c). In the middle, for adequate combinations of resolution and gain, the 796 

topology of the input dataset is preserved and correctly represented by the shape graph (Fig. 6e 797 

section B, Fig. 6b). This distribution of valid results based on scale parameters provides 798 

guidance on choosing an appropriate combination. As expected, proportional changes in gain 799 

and resolution parameters will yield the same topological features. Moreover, increasing the 800 

scale parameters will increase the total number of nodes, with the resolution parameter having a 801 

stronger effect (r(446)=.87, p<10-32) than the gain parameter (r(446)=.36, p=2.7 * 10-15).  802 

 803 

Using a different binning strategy, we observe the same parameter dependence (Intrinsic 804 

Binning, see Methods), where the resolution parameter controls the number of landmarks 805 

chosen on the k-NN graph, and the gain controls the distances and overlap between landmarks 806 

(Supplementary Fig. S5). As the filtering function might influence the types of topological 807 

features extracted, we verified the interaction between parameters on a different dimensionality 808 

reduction technique. We observe the same effect when using UMAP (see Methods) instead of 809 

CMDS as a filter function (Supplementary Fig. S7).  810 

 811 

Figure 6: Choosing the appropriate scale when running Mapper. (a) Shape graph results 812 
from the simulated dataset produced by an Extrinsic Mapper with resolution=20, gain=50%, 813 
k=20. Each node is represented as a pie chart of the composition of time points within that 814 
node. (b) Shape graph result using Extrinsic Mapper with resolution=20, gain=70%, k=20. (c) 815 
Shape graph result using Extrinsic Mapper with resolution=20, gain=90%, k=20. (d) Grid of 816 
shape graph produced by Extrinsic Mapper with k=20 for resolution parameters: 10, 20, 30, and 817 
40; and gain parameters: 50%, 60%, 70%, 80%, and 90%. The valid Mapper results are 818 
highlighted within a green box. (e) A larger grid of valid Mapper results is now aggregated over 819 
different k values: 10, 20, 30, 40, 50, 60, and 70. The plot shows three main regions. Region A 820 
is associated with high resolution and/or low gain, similar to subplot (a). Region C is associated 821 
with low resolution and/or high gain, similar to subplot (c). The middle region B shows a band of 822 
valid Mapper graphs independent of any k value with appropriate resolution and gain 823 
parameters. All Mapper shape graphs in this plot are generated with the geodesic Euclidean 824 
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distance metric (needs the k parameter), CMDS embedding, extrinsic binning, and single 825 
linkage clustering.  826 
 827 

3.3.2 Real dataset 828 

In the case of real fMRI data, the resolution and gain parameters similarly affect the Mapper 829 

shape graph as we observe that three Mapper configurations have qualitatively different 830 

resulting shape graphs (Fig. 7a-c). When using a low gain value, the Mapper algorithm fails to 831 

extract the topological features of the input dataset because the shape graph does not create a 832 

connected component graph (Fig. 7a). When the Mapper algorithm uses higher gain values, the 833 

shape graph has high connectivity patterns that lose the specificity of node types (Fig. 7c). In 834 

between those extreme values for the gain parameter, the Mapper algorithm shows the features 835 

expected (Fig. 7b) (the resting task nodes show a periphery trajectory while memory and math 836 

task nodes are highly connected in the core hubs on the shape graph (Saggar et al., 2018). 837 

 838 

For a large number of parameter configurations (resolution, gain, and k parameters), the 839 

Mapper algorithm passes the validation criterion (see Methods) for a set of suitable resolution 840 

and gain parameters (Fig. 7d). As seen for the simulated dataset, the valid set of parameters 841 

are correlated for resolution and gain. For graphs that pass the validation criteria, the average 842 

delay of the extracted task transition spans from 3.2 to 39.4 seconds, with an average of 16.6 843 

seconds (Fig. 7e). Accurate prediction of the transitions required a minimal value for resolution 844 

and gain (resolution > 5 and gain > 20%), which corresponds to the lower bound of the minimal 845 

number of nodes and connectivity required to represent the topology of the real dataset. 846 

 847 

Figure 7: Choosing scale parameters when using the Mapper algorithm on fMRI data. (a) 848 
The Mapper shape graph on the fMRI dataset with an Extrinsic Mapper (resolution=30, 849 
gain=30%, k=12) for a single subject. Each node is represented by a pie chart of the 850 
composition of time points within that node. (b) An example of a Mapper shape graph with a 851 
discernible structure (resolution=40, gain=60%, k=12). (c) An example of an invalid shape graph 852 
result (resolution=30, gain=90%, k=12). All the Mapper shape graphs in this plot are generated 853 
with the geodesic Euclidean distance metric (needs the k parameter, k=12), CMDS embedding, 854 
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extrinsic binning, and single linkage clustering. (d) Mapper configurations that pass the 855 
validation criteria on a resolution-by-gain grid (see Methods). The parameter varied is the k-856 
value used to construct the geodesic distances. The green rectangles show the parameter 857 
configurations used for plots a, b, and c. (e) Heatmap of the delay per detected transition on a 858 
resolution-by-gain grid. The average delay represents the GOF metric of the Mapper shape 859 
graph (see Methods). The missing values of the heatmap, represented by white colors (same as 860 
the background), are parameter configurations that return invalid Mapper shape graphs.  861 
 862 

3.4 Effect of the clustering algorithm on the Mapper results 863 

As the fourth step, the clustering method is essential for generating the nodes of the Mapper 864 

shape graph. We identify and analyze two clustering algorithms: Single Linkage and Density-865 

based spatial clustering of applications with noise (DBSCAN) (Fig. 8). For the simulated 866 

dataset, the Linkage clustering method outperforms the DBSCAN algorithm by having, on 867 

average, more mapper shape graphs validated by the circleness GOF criterion (two-sample t-868 

test t(79)=2.14 p=0.036, Fig. 8a). Interestingly, for the real dataset, the DBSCAN algorithm 869 

outperformed the Single Linkage algorithm (two-sample t-test t(79)=-5.2 p=1.57 x 10-6, Fig. 8b). 870 

Breaking down the algorithms based on the hyperparameters used (Fig. 8c), we find a greater 871 

variation with the Single Linkage algorithm (one-way ANOVA F(3, 37)=39.63, p=1.69 x 10-11), 872 

while the DBSCAN algorithm has no variation in performance for its hyperparameters (one-way 873 

ANOVA F(3,37)=2.7, p=0.06). Moreover, the best-performing hyperparameter configurations 874 

(single linkage bins=5, vs. DBSCAN eps=16) have no significant difference in performance (two 875 

sample t-test t(19)=-0.36, p=0.72). 876 

  877 

Figure 8: The effect of the clustering algorithm choices for the construction of the 878 
Mapper Shape graphs. (a) The performance of Mapper with different clustering methods on 879 
the simulated dataset. (b) The performance of Mapper using different clustering algorithms on 880 
the real dataset. (c) On the real dataset, we show the performance of the clustering method 881 
based on the hyperparameter value used: the number of bins for the Single Linkage algorithm 882 
and the epsilon for the DBSCAN algorithm. The inverted-“U” connecting two distributions 883 
represents a t-test, and a straight line over multiple distributions represents an ANOVA test. The 884 
performance distributions in are shown as box plots. The result of the significance tests: n.s. is 885 
not significant p > 0.05; * is p < 0.05; ** is p < 0.01; *** is p < 0.001. 886 
 887 
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3.5 DeMapper software release 888 

The manuscript introduces DeMapper as an interactive open-source software tool designed for 889 

the neuroscience community, particularly for handling neuroimaging datasets. The versatility of 890 

DeMapper is shown by its dual operational modes: a MATLAB library for detailed, single 891 

Mapper configurations and a Command Line Interface (CLI) for batch processing numerous 892 

Mapper configurations. 893 

  894 

DeMapper allows for intricate, single Mapper configurations in its MATLAB library form. Fig. 9 895 

(left side) exemplifies the process, starting with setting parameters (opts) for a single Mapper 896 

configuration. Values are selected for each Mapper parameter: distance type, embedding 897 

algorithm, binning strategy, clustering algorithm, and graph generation. For further 898 

customization, the user can provide custom-built functions that would fulfill similar roles within 899 

the Mapper algorithm. Following the parameter setup, the bottom-left panel illustrates a practical 900 

application of the configured Mapper on a dataset. We recommend using this workflow when 901 

exploring Mapper parameters or prototyping new configurations.  902 

  903 

DeMapper offers a Command Line Interface (CLI) for scenarios requiring analysis of multiple 904 

parameter configurations, which runs by calling the respective MATLAB functions (Fig. 9 right 905 

side). The top-right panel introduces the format to describe the parameter specification in a 906 

JSON format. This format mirrors the parameters set in the MATLAB code version but 907 

introduces variability and breadth in the analysis. For example, the geodesic Euclidean distance 908 

metric is tested with two distinct k-values, allowing for comparison and fine-tuning. Moreover, it 909 

specifies using two binning resolution values and four gain parameter values. In total, this JSON 910 

configuration file leads to the generation of sixteen Mapper graphs, stemming from the 911 

combinations of the specified parameters. 912 
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 913 

On top of providing the Mapper configuration, the DeMapper CLI toolbox also runs minimal 914 

preprocessing and statistical analyses. For preprocessing, the example JSON configuration 915 

shows how to specify the renormalization of the input data (z-scoring). DeMapper provides a 916 

variety of rudimentary matrix preprocessing steps, and the user can easily extend those for 917 

each use case. For analysis, DeMapper offers standard graph analysis tools and plotting 918 

functionality. The advantage of using this functionality is the easy aggregation of statistics and 919 

plots over all the Mapper configurations. This step is also highly customizable for usability, and 920 

we recommend users use their built-in methods if needed. 921 

 922 

The DeMapper CLI interface can be accessed by running the appropriate MATLAB function 923 

(Fig. 9 bottom-right panel). The arguments provided define the paths on the local file disk to 924 

the respective input and output locations. Moreover, DeMapper's design also embraces parallel 925 

processing, leveraging the independence of each Mapper configuration to expedite the analysis. 926 

 927 

Central to DeMapper's application is its adaptability to analyzing any 2-dimensional matrix, as 928 

evidenced in our analysis, where it's employed to examine matrices representing measurements 929 

across various locations (parcels) over time, thus elucidating the dynamic topology. Similarly, 930 

one could analyze the “structural topology” by investigating how the parcels are related 931 

throughout time. Moreover, the batch analysis tool of DeMapper excels in scanning multiple 932 

configurations to pinpoint the optimal setup for any input dataset, echoing the hyperparameter 933 

search prevalent in Machine Learning. This tool also offers an array of common presets for 934 

preprocessing and analysis, facilitating minimal setup for immediate application on diverse 935 

datasets. Furthermore, the platform encourages the creation of custom extensions for 936 

preprocessing, analysis, and even Mapper steps, ensuring a tailored fit for each unique use 937 

case. As the quantity of Mapper graphs escalates with the number of configurations and inputs 938 
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(such as subjects and sessions), DeMapper's parallelization capability significantly reduces 939 

runtime on multi-processor systems, as depicted in Fig. 9. Designed to be self-contained, 940 

DeMapper requires minimal installation efforts, empowering users to commence utilizing the 941 

software with ease and efficiency. 942 

 943 

Figure 9: DeMapper code examples. The left side shows a code example for running 944 
DeMapper as one Mapper configuration and creating a simple graph out of it. The top-left 945 
panel shows how to set the parameters (opts) for a single configuration of Mapper: [1] picking 946 
the distance metric as a geodesic Euclidean distance metric with a k-value of 12; [2] picking the 947 
embedding algorithm as the CMDS embedding algorithm in 2 dimensions; [3] picking the 948 
binning strategy as the N-dimensional binning with resolution=10 (10 per dimension), and a gain 949 
of 60%. The bins are polygons with 4 sides (rectangles); [4] picking a clustering algorithm as the 950 
Linkage algorithm with 10 histogram bins; [5] generating a full graph with all the possible edges 951 
between nodes. The bottom-left panel runs the mapper configuration previously set on a 952 
dataset loaded and z-scored from ‘data_path.’ Moreover, it generates a simple graph based on 953 
the adjacency matrix of the mapper shape graph nodes. The right side shows code examples 954 
of running DeMapper on multiple parameter configurations. The top-right panel shows the 955 
configuration as written as a JSON file that describes the same parameters as in the mapper 956 
configuration set in the left side panel, with a few differences: the geodesic Euclidean distance 957 
will be tested with two k-values (12 and 16); the binning resolution will take two values (10 and 958 
20 bins per dimension); the gain will take four values (50%, 60%, 70%, 80%); there are two 959 
extra analyses being run for each mapper generated (a plot graph and a compute stats with an 960 
HRF threshold of 11 seconds). This JSON configuration will generate a total of sixteen Mapper 961 
graphs (two k-values by two resolutions by four gain parameters) with their associated analyses. 962 
The bottom-right panel shows how to run the DeMapper from a bash command to correctly 963 
reference the JSON configuration. The MATLAB variables defined are: poolsize determines the 964 
level of parallelization; cohort_csv is the path to a CSV file representing the inputs to be 965 
analyzed (subjects, sessions, etc.); config_path is the path to the JSON file describing the 966 
mapper configurations; data_root is the path to the input dataset, referenced relatively in the 967 
cohort_csv; output_dir is the path where to write the results. The sixteen mapper graphs 968 
(defined by the JSON file) will be generated for each input to be analyzed (defined by the cohort 969 
CSV file).  970 
 971 

 972 

4. Discussion 973 

Despite the success of Mapper in uncovering brain dynamics during both resting and task-974 

evoked states, there needs to be more systematic investigation into the algorithm's parameter 975 

selections and how they influence the resulting shape graphs. In this study, we analyzed various 976 

parameter choices for each deconstructed phase of the algorithm using simulated and real fMRI 977 
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datasets to comprehend their impact on the final shape graph depicting neural dynamics. 978 

Additionally, we briefly investigated the influence of noise on Mapper graphs and assessed their 979 

resilience when exposed to poor temporal resolution. As part of this research endeavor, we also 980 

released a Matlab-based toolbox, DeMapper, which could, in turn, facilitate convenient 981 

experimentation with Mapper, accommodating both naive and expert users. We hope this work 982 

could serve as a valuable resource for researchers (even beyond the field of neuroimaging) 983 

seeking to explore and analyze neural dynamics. 984 

 985 

This paper provides several recommendations for researchers interested in utilizing the Mapper 986 

algorithm to analyze neuroimaging data, particularly fMRI data. First and foremost, finding that 987 

the distance metric has a significant impact on the investigated datasets, we prescribe using the 988 

Euclidean distance (ED) as the preferred distance metric. Previous studies have demonstrated 989 

the efficacy of ED in various applications involving neural data (Kaiser, 2011; Supekar et al., 990 

2009), such as fiber tracking in the brain (Kellmeyer & Vry, 2016) and multivariate distance 991 

matrix regression analysis (Tomlinson et al., 2022). However, we acknowledge the need for 992 

future investigations to explore alternative distance measures. In particular, we hypothesize that 993 

angle measures, such as cosine similarity, may prove valuable in capturing higher-order 994 

interactions where geometric distances are unreliable. 995 

 996 

Furthermore, our findings compel us to advocate using the geodesic distance metric 997 

construction based on the k-nearest neighbors (k-NN) algorithms. This approach to distance 998 

measurement captures the intrinsic local structure by encapsulating the correlation between 999 

subsequent steps of the time series. Given the propensity for neuroimaging datasets to exhibit 1000 

pronounced interdependencies across successive temporal measurements, integrating 1001 

geodesic metrics within the Mapper algorithm yields notable advantages in unraveling intricate 1002 

patterns and dynamics inherent to such datasets. 1003 
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 1004 

In selecting a filter function for the Mapper algorithm, our investigation unveils insightful nuances 1005 

when processing simulated and real neuroimaging datasets. Firstly, using Classical 1006 

Multidimensional Scaling (CMDS) on constructed pairwise distances consistently reveals the 1007 

correct topological shapes. Secondly, UMAP demonstrates an interesting effectiveness at low k-1008 

values, attributed to its own topological deconstruction process. Thirdly, despite preserving local 1009 

structure, t-SNE struggles to capture the expected topological features. Drawing from these 1010 

findings, we advocate adopting CMDS on geodesic pairwise distances as a robust choice for an 1011 

extrinsic filter function within the Mapper algorithm. This configuration has proven successful 1012 

across various applications in our endeavors (Saggar et al., 2022). Considering an alternative 1013 

filter, the intrinsic Mapper (Geniesse et al. 2022), operating in the original space, showcases 1014 

remarkable similarity in shape graphs to its extrinsic counterpart. The intrinsic approach even 1015 

projects data into a space akin to high-dimensional embedding, enabling faster processing due 1016 

to avoiding exponential bin proliferation. While the intrinsic Mapper represents a newer and 1017 

more scalable version of the algorithm, our results suggest that the traditional extrinsic Mapper 1018 

may be sufficient for analyzing simulated data and data derived from simple cognitive tasks, as 1019 

employed in this study. However, we propose that future research explore the intrinsic Mapper's 1020 

potential advantages in analyzing complex task paradigms, such as naturalistic settings 1021 

involving activities like watching movies or open-ended paradigms. Furthermore, considering 1022 

the scalability of intrinsic Mapper, datasets other than neuroimaging, e.g., genetics which could 1023 

contain millions of features and hundreds of thousands of rows, might be better suited for 1024 

intrinsic Mapper. 1025 

 1026 

Determining the optimal spatiotemporal scale for Mapper remains important in our research. 1027 

The resolution and gain parameters are crucial in determining the level of detail in the resulting 1028 

Mapper graphs, ranging from a single-node graph to having as many nodes as rows in the input 1029 
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data. Achieving scalability in representation has been a subject of extensive study, but there is 1030 

no definitive answer yet. Thus, we recommend comprehensively exploring parameter choices 1031 

across a broad range, potentially on a small sample of subjects (e.g., using a sandbox dataset 1032 

for finetuning hyper-parameters). To enhance the search for optimal parameters, future studies 1033 

could employ techniques like Bayesian hyperparameter tuning (Shahriari et al., 2016). 1034 

Additionally, when reporting results, researchers should include parameter perturbation 1035 

analyses to demonstrate the stability and reproducibility of their findings across various 1036 

parameter choices. Moreover, an important future direction is investigating potential individual 1037 

differences in Mapper binning parameters. It would be valuable to explore whether different 1038 

subjects, age groups, or individuals with varying psychopathology profiles influence the 1039 

spatiotemporal scale of brain dynamics, requiring further investigation and study. 1040 

 1041 

Partial clustering is the fundamental step defining the Mapper algorithm, historically 1042 

implemented through a single linkage (Singh et al., 2007). However, the rationale behind this 1043 

preference instead of alternative methodologies lacks explicit justification. Our work 1044 

underscores the need for further investigation to find the constraints for an optimal clustering 1045 

algorithm, given that we revealed incongruent superior performers contingent on the dataset 1046 

characteristics. While Single Linkage is conventionally favored in the context of Topological 1047 

Data Analysis (TDA), we posit that a thorough evaluation of the DBSCAN algorithm is a 1048 

potentially advantageous alternative. 1049 

 1050 

Finally, some recommendations for reporting Mapper-generated results. First, validating the 1051 

findings across multiple brain parcellations is advisable to ensure robustness and 1052 

generalizability. This approach helps demonstrate that the observed patterns are consistent and 1053 

not solely dependent on a specific parcellation scheme. Second, conducting parameter 1054 

perturbation analyses is crucial for establishing the stability and reliability of the results across a 1055 
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wide range of parameter choices. This demonstrates that the findings are not mere artifacts of a 1056 

particular parameter setting but reflect meaningful and consistent patterns in the data. Third, it is 1057 

essential to employ appropriate null models, such as phase randomized null models, to account 1058 

for linear and trivial properties of the data, such as autocorrelation in fMRI data. This allows for a 1059 

more rigorous assessment of the significance of the observed patterns and helps distinguish 1060 

genuine effects from random fluctuations. Finally, reporting individual-level results in addition to 1061 

group averages is highly recommended. This individual-level analysis provides valuable insights 1062 

into inter-subject variability and can reveal important nuances that might be obscured by 1063 

averaging across participants. 1064 

 1065 

Limitations & Future Work 1066 

Our study primarily focused on block design-based fMRI data, both simulated and real. 1067 

However, it is essential to acknowledge that other fMRI experimental designs, such as event-1068 

related and naturalistic fMRI, present distinct challenges and characteristics. The applicability 1069 

and performance of the TDA-based Mapper approach in these alternative experimental designs 1070 

still need to be determined. While recent research (Ellis et al. 2019) has shown promise in 1071 

capturing topological structures from fast experimental designs, further investigation is 1072 

warranted to evaluate the generalizability of our findings. Further, while we have presented 1073 

empirical results illustrating the stability and reliability of Mapper graphs across a wide range of 1074 

parameter configurations, we have yet to delve into the theoretical underpinnings of this 1075 

stability. Prior studies have addressed the theoretical aspects of Mapper graphs (Bungula 2018, 1076 

Carriere et al. 2018). Notably, recent work by Brown et al. (2021) explored the convergence of 1077 

Mapper graphs in a probabilistic context. Future research should consider both empirical and 1078 

theoretical aspects to provide a comprehensive understanding of Mapper graph stability. Our 1079 

investigation is confined to fMRI data, and as such, our findings do not extend to other non-1080 

invasive human neuroimaging methodologies, such as EEG, fNIRS, and MEG. While Mapper 1081 
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has potential applications in invasive neuroimaging data, it may necessitate the exploration of 1082 

different parameter configurations to accommodate the unique characteristics of these 1083 

modalities. Future research should expand the scope to encompass a broader range of 1084 

neuroimaging data sources. Another important limitation of our study lies in the comparison of 1085 

different algorithms (e.g., UMAP, t-SNE) with varying parameter configurations. Each 1086 

algorithm's performance could be improved with further fine-tuning. Our primary objective was to 1087 

assess the ease of identifying suitable parameter configurations for accurate topological feature 1088 

extraction. Future research can delve deeper into optimizing individual algorithms to refine their 1089 

performance. This work aimed to analyze the nuances of various subroutines within the Mapper 1090 

framework rather than directly comparing Mapper to existing dimensionality reduction 1091 

approaches (e.g., PCA, MDS, UMAP, etc.). Previous works have shown how Mapper 1092 

differentiates from traditional dimensionality reduction approaches (Lum et al., 2013; 1093 

Phinyomark et al., 2017), but the field would benefit from future comparative works. Lastly, we 1094 

primarily focused on examining changes in brain activation over time using Mapper. However, 1095 

future work is needed to capture second-order dynamics, e.g., edge functional connectivity 1096 

(Faskowitz et al., 2020) and higher-order dynamics (Santoro et al., 2023) using Mapper. 1097 

 1098 
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