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ABSTRACT 37 

Depression affects over 350 million people worldwide, with treatment resistance occurring in up to 30% of 38 

cases. Intermittent theta burst stimulation (iTBS) targeting the left dorsolateral prefrontal cortex (DLPFC) 39 

has emerged as a promising intervention, yet the neurophysiological mechanisms determining which 40 

patients will respond remain poorly understood. Here, we combined transcranial magnetic stimulation with 41 

electroencephalography and whole-brain computational modeling to uncover the mechanistic basis of 42 

treatment efficacy in 90 patients with treatment-resistant depression. We identified two distinct 43 

neurophysiological signatures that differentiate responders from non-responders: (1) post-treatment shifts 44 

in excitation-inhibition balance toward greater inhibitory control, and (2) a pre-treatment brain state 45 

characterized by anticorrelated dynamics between subgenual anterior cingulate cortex and DLPFC. These 46 

features were significantly correlated with clinical improvement and could not be explained by non-specific 47 

factors. Our findings provide a neurophysiologically-informed framework for developing personalized and 48 

optimized neuromodulation approaches in treatment-resistant depression.   49 
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MAIN 50 

Major depressive disorder (MDD) has a lifetime prevalence of approximately 20% in the US and affects 51 

over 350 million people worldwide, making it one of the leading contributors to disability1. Despite various 52 

available treatments, only about 30% of patients achieve remission with first-line therapies2, and many 53 

develop treatment-resistant depression—a condition where patients fail to respond to multiple medication 54 

trials and face increasingly limited therapeutic options. Repetitive transcranial magnetic stimulation (rTMS) 55 

has emerged as a promising intervention for these patients with TRD3–5, offering an alternative where 56 

conventional pharmacotherapy has failed. 57 

Intermittent theta burst stimulation (iTBS), an FDA-approved rTMS protocol that couples slow theta-58 

frequency carrier waves with brief gamma-frequency bursts, has garnered particular attention for its 59 

enhanced neurophysiological effects and treatment efficiency compared to conventional rTMS6. iTBS 60 

delivered to the left dorsolateral prefrontal cortex (L-DLPFC) has demonstrated promising response and 61 

remission rates in TRD7. Yet despite these advances, treatment outcomes remain highly variable, with 62 

response rates typically ranging from 29% to 46%8,9. This variability in treatment response presents a 63 

significant clinical challenge, and underscores a fundamental gap in our understanding of depression 64 

pathophysiology and neuromodulation mechanisms. 65 

To address this clinical variability and advance therapeutic outcomes, we must bridge the gap between basic 66 

neuroscience and clinical application. Specifically, two critical questions emerge that lie at the intersection 67 

of basic neuroscience and clinical psychiatry: i) What are the factors that determine whether a given 68 

administration of iTBS therapy will effectively engage the neural circuit and neuroplasticity-related 69 

mechanisms that ultimately lead to alleviation of depressive symptoms in a given patient? ii) What 70 

neurophysiological markers can be used in the clinic to reliably distinguish between potential responders 71 

and non-responders before treatment begins, and what can we say about the neural circuitry underlying 72 

these markers? Answering these could transform the field of TRD neuromodulation therapy design, moving 73 

away from its current paradigm of trial-and-error discovery science, and moving toward a more effective 74 

precision medicine model, where interventions are tailored to the specific individual features of the patient’s 75 

own neuroanatomy and neurophysiology. Multiple neuroimaging approaches have sought to answer these 76 

two questions over the past 20 years, within which TMS-EEG stands out as the most powerful tool available 77 

for flexibly studying the neural mechanisms underlying iTBS treatment effects. By combining TMS with 78 

EEG, researchers can measure cortical excitability and plasticity through both stimulation-evoked 79 

responses and stimulation-induced oscillatory activity. This approach has identified neurophysiological 80 

markers that differentiate responders from non-responders across various TMS protocols10–13, with 81 

particular emphasis on treatment-related changes in low-frequency oscillations, that may reflect 82 

fundamental alterations in cortical circuit properties. Specific components of the TMS-evoked potential 83 
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(TEP) and induced oscillatory activity serve as indirect proxies of cortical excitation-inhibition (E/I) 84 

balance14,15, which appears disrupted in MDD16. Indeed, Voineskos et al.17 demonstrated significant deficits 85 

in GABA-mediated cortical inhibition in patients with MDD compared to healthy controls, aligning with 86 

broader evidence of altered GABA and glutamate levels across multiple brain regions in depression18–20. 87 

Notably, better clinical outcomes have been associated with specific pre-treatment TMS-EEG markers, 88 

including a more negative N45 waveform, and a smaller P60 amplitude21, potentially reflecting enhanced 89 

GABAergic inhibition and reduced glutamatergic excitation, respectively. 90 

Complementing these electrophysiological findings, functional magnetic resonance imaging (fMRI) studies 91 

have revealed that stronger negative functional connectivity between the DLPFC stimulation site and 92 

subgenual anterior cingulate cortex (sgACC) at baseline predicts better treatment outcomes22–25. This latter 93 

finding highlights the importance of fronto-limbic circuit dynamics in determining treatment response, 94 

suggesting that rTMS may achieve its therapeutic effects by modulating communication between these key 95 

regions.  96 

Despite these promising leads however, the field of therapeutic TMS does face significant challenges. 97 

Results show high inter- and intra-subject variability, findings across studies often appear contradictory, 98 

and the precise mechanisms linking observed neural responses to clinical outcomes remain elusive. This 99 

knowledge gap severely hampers efforts to optimize and personalize TMS treatments. Neuroimaging and 100 

human neurophysiology techniques for measuring and monitoring brain activity, while valuable, allow only 101 

indirect inferences about underlying neural mechanisms, and carry a host of limitations such as low signal-102 

to-noise ratios, limited spatial resolution, and challenges in accurate measurement26,27. What is critically 103 

needed is an integrative mechanistic framework that can bridge between measurable brain signals and the 104 

underlying neural circuit dynamics that determine treatment response. Whole-Brain Modeling (WBM) - 105 

the sub-field of computational neuroscience concerned with the theoretical principles and numerical 106 

simulation of large-scale brain network dynamics - offers just such a framework. WBMs can provide a 107 

robust, flexible approach for testing mechanistic hypotheses about how iTBS modulates neural circuit 108 

dynamics to achieve therapeutic effects28,29. This approach has already demonstrated value in understanding 109 

the pathophysiology of various conditions30–34. 110 

In this study, we combined longitudinal TMS-EEG measurements with WBM to investigate the 111 

neurophysiological mechanisms underlying treatment response in TRD. Our integrated approach revealed 112 

two key findings: First, successful iTBS treatment was characterized by specific reductions in low-113 

frequency (3–10 Hz) oscillatory power. Computational modeling indicated that these power changes 114 

reflected shifts in E/I balance toward greater inhibitory control, resulting from reduced excitatory drive to 115 

cortical pyramidal cell populations. Second, a specific spatiotemporal activity pattern observed in pre-116 

treatment TMS-EEG, characterized by an anti-phase (negatively correlated) relationship between left 117 
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DLPFC and sgACC, was found to predict clinical outcomes - consistent with fMRI studies of fronto-limbic 118 

connectivity in TRD22–24. Together, these findings provide a neurophysiologically-grounded framework 119 

linking treatment efficacy to fundamental changes in cortical dynamics, pointing toward novel approaches 120 

for personalizing neuromodulation therapies in TRD.  121 
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RESULTS 122 

Higher inhibition in responders following iTBS 123 

We first examined the differential impact of iTBS on the induced oscillatory activity of stimulus-related 124 

brain dynamics. To do this, we compared TMS-EEG time-frequency activity between responders and non-125 

responders. As shown in Fig. 1A, we compared the post-iTBS minus pre-iTBS induced power difference 126 

between responders and non-responders. While both groups showed decreases in induced power following 127 

iTBS, responders exhibited significantly greater reduction in the 3-10 Hz range compared to non-128 

responders. This differential spectral power response was statistically significant (1,000 permutations, all 129 

clusters p < 0.05, corrected). The significant cluster spanned the 3-10 Hz frequency range and was most 130 

pronounced between 50-200ms post-stimulus, indicating a distinct neurophysiological response pattern in 131 

participants who responded to the iTBS intervention versus those who did not. Transient differences in 132 

gamma-band activity (30–50 Hz) were also observed, but these effects did not survive cluster-based 133 

permutation testing. To better understand the circuit mechanisms underlying this low-frequency TEP 134 

suppression effect, we next turned to the WBM approach outlined above (see also Fig. 5) - first with data-135 

driven physiological parameters estimated from model fits to TEP waveform data, followed by some novel 136 

exploratory numerical simulations. 137 

Our model of neurostimulation-evoked brain dynamics35,36 is a connectome-based extension of the classic 138 

Jansen-Rit (JR) neural mass model37–39. In JR, shifts in the excitatory/inhibitory (E/I) balance can occur 139 

through complementary synaptic mechanisms: decreased pyramidal drive to excitatory cells (reduced 140 

P→E; c1) and enhanced inhibitory feedback (increased I→P; c4). Both mechanisms functionally shift the 141 

circuit toward greater inhibitory influence, though through distinct synaptic pathways. Throughout the 142 

following, for the sake of clarity we refer to both of these related changes as shifts toward inhibition. 143 

Looking at the model parameter estimates in relation to the TEP waveform properties: a significant positive 144 

correlation was found between changes (post-iTBS minus pre-iTBS) in the excitatory feedback loop 145 

strength (expressed as P→E cell connection strength, c1) and the z-score differences in 3–10 Hz power 146 

between post-iTBS and pre-iTBS observed in responders (Fig. 1B; r = 0.56, p < 0.001). This correlation 147 

indicates that a greater reduction in low-frequency power, as observed in responders to iTBS treatment (Fig. 148 

1A), is associated with reduced excitatory feedback after treatment. This result suggests that the plasticity-149 

inducing effects of iTBS may decrease excitatory feedback mechanisms, leading to the observed 150 

diminishment in low-frequency oscillatory responses. 151 

To further explore the mechanistic role of increased inhibition, we simulated the effects of reducing the 152 

P→E cell connection strength by 10%, 30%, and 50% of the original value across all participants. For 153 

illustration, Fig. 1C presents results of this simulation on the time-domain TEP waveforms for the 154 

participant with the highest Hamilton Depression Rating Scale (HDRS) score40, representing more severe 155 
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MDD. This simulation, which shifted the circuit balance toward inhibition by decreasing the P→E 156 

connection strength, resulted in a marked reduction in the TEP amplitude, particularly in the late 157 

components. The impact of enhanced inhibitory signaling appears to attenuate TEP responses in patterns 158 

consistent with those observed in clinical responders.  159 

Corresponding analyses in the time-frequency domain are shown in Fig. 1D, where we compared simulated 160 

TMS-EEG data with baseline (0% increase) and enhanced (50% increase) levels of inhibition. Similar to 161 

the empirical findings in responders (Fig. 1A), simulations showed a reduction in low-frequency power 162 

when inhibition was elevated, aligning with the 3–10 Hz power reduction observed in Panel A. 163 

Finally, we examined the Global Mean Field Amplitude (GMFA)41 across empirical and simulated 164 

conditions (Fig. 1E). In the empirical data, responders showed a decrease in GMFA post-iTBS in the late 165 

component of the evoked response (solid line) compared to the pre-iTBS baseline (dashed line), replicating 166 

our previous result with this dataset42. Simulations with incremental inhibition showed a similar trend, 167 

where increasing inhibition progressively reduced the GMFA, particularly in the late component for 168 

responders. These converging lines of evidence further strengthen the relationship between iTBS-induced 169 

inhibitory modulation and treatment response43. 170 
 171 

172 
Fig. 1. iTBS therapy suppresses TEP low-frequency oscillatory power by modulating the level of inhibition. (A) 173 
Induced time-frequency spectral response difference between responders and non-responders, showing significantly 174 
lower power in the 3–10 Hz range in responders relative to non-responders. (B) Significant correlation (r = 0.56, p < 175 
0.001) between post-iTBS vs pre-iTBS changes in the P→E synaptic weights) and in the significant cluster regions 176 
identified in Panel A. (C) Simulated effects of shifting E/I balance toward inhibition (via decreased P→E ) for the 177 
participant with the highest Hamilton Depression Rating Scale score (indicating more severe MDD). This simulation 178 
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reveals a notable reduction in TEP amplitude, especially in the late components, with increasing inhibition. (D) Group-179 
level induced time-frequency spectral comparison between the original (0% increased inhibition) and a 50% 180 
inhibition-increased simulation, demonstrating a similar low-frequency reduction as observed in empirical data in 181 
Panel A. (E) GMFA for empirical data, with pre (dashed) vs. post (solid) responses shown for responders (top). GMFA 182 
across simulations with incremental inhibition (bottom) reveals a similar trend where increased inhibition is associated 183 
with a decrease in the late component amplitude for responders. 184 
 185 

 186 

Responder-specific elevated inhibition after iTBS treatment 187 

To examine differential neural responses to iTBS, we analyzed changes in JR model parameters between 188 

responders and non-responders. The 2×2 repeated measures Analysis of Variance (ANOVA) for inhibitory-189 

to-pyramidal (I→P; c4) synaptic weights revealed a significant interaction time*group (F(1,86) = 29.11, p 190 

< 0.001) and a significant main effect of group (F(1,86) = 76.86, p < 0.001). Post-hoc tests showed no pre-191 

iTBS differences (t = -1.21; p = 0.23) but significant post-iTBS differences between groups (t = -2.598; 192 

p=0.0147), with responders exhibiting greater I→P weights (Fig. 2A). As I→P was the only parameter 193 

showing significant group effects, we further explored its predictive value by correlating pre-iTBS I→P 194 

weights with post-treatment HDRS scores. This analysis revealed a significant negative correlation (r = -195 

0.56, p < 0.0001), indicating that higher inhibitory feedback pre-treatment predicted greater symptom 196 

improvement among responders (Fig. 2B).  197 

For E/I balance, the ANOVA also revealed a significant group*time interaction (F(1,86) = 38.29, p < 0.001) 198 

and main effect of group (F(1,86) = 59.21, p < 0.001). While pre-iTBS E/I balance showed no between-199 

group differences (t = 0.82, p = 0.19), post-iTBS measures differed significantly (t = 10.088, p<0.001). This 200 

shift suggests that iTBS selectively modulated inhibitory mechanisms in responders, while non-responders 201 

showed no significant E/I balance changes (Fig. 2C). These findings align with literature suggesting 202 

increased inhibitory tone may benefit treatment outcomes in responders10,44. 203 

 204 

205 
Fig. 2. iTBS therapy modifies inhibitory feedback in cortical circuits differently in responders and non-206 
responders. (A) Strength of the inhibitory feedback loop for responders (green) and non-responders (yellow) post-207 
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iTBS therapy, as given by per-group distributions of estimated Inhibitory interneuron (I) to Pyramidal cell (P) 208 
population synaptic weights (I→P). Vertical dashed line indicates the average pre-iTBS value of this parameter, 209 
showing that both responders and non-responders had the same starting value before treatment. Post-iTBS therapy, 210 
responders exhibit an increase in inhibitory feedback, while non-responders show the opposite effect. (B) Pre-iTBS 211 
I→P synaptic weights demonstrate a significant negative correlation with post-treatment depression severity (HDRS 212 
scores) exclusively in responders (r = -0.56, p < 0.0001). This relationship indicates that patients with higher inhibitory 213 
feedback prior to treatment experienced greater symptom reduction, suggesting that iTBS may exert its therapeutic 214 
effects by enhancing inhibitory mechanisms within local neural circuits (C) Ratios of excitatory to inhibitory (E/I) 215 
synaptic weights across responders (green) and non-responders (yellow), both before (dashed) and after (dotted) iTBS 216 
therapy. A significant increase in inhibition is observed in responders only following the treatment. 217 
 218 

Subgenual-prefrontal interaction predicts the efficacy of iTBS therapy  219 

Our results reported thus far point to modulation of inhibition, of E/I ratios, and of low-frequency TMS-220 

induced oscillatory power as signatures of successful rTMS therapy for TRD, One limitation of these 221 

findings however is that they both represent fairly global and spatially non-specific markers of both brain 222 

activity (GMFA) and brain circuit physiology (P→E, I→P). Next, we explored whether our patient-223 

personalized WBMs of TMS-evoked brain dynamics contained meaningful spatiotemporal patterns of 224 

neural activity, and whether these showed any relationship to clinical improvement.  225 

Mean-centered Partial Least Squares (PLS) analysis on the model's pre-treatment neural population time 226 

series identified a significant brain state (Fig. 3A) that maximally differentiates between responders and 227 

non-responders (p=0.001). Interestingly, within this brain state, the eigenvector values extracted from the 228 

left DLPFC (the area stimulated during iTBS) and left sgACC (a deeper mesocortical limbic system region 229 

strongly implicated in MDD pathophysiology) exhibited opposite signs, as indicated by their respectively 230 

red and blue colours in Fig. 3A/B. The opposite-polarity loadings of DLPFC and sgACC on this treatment-231 

related eigenvector align with the extensive prior fMRI literature reporting that the strength of (resting-state 232 

BOLD time series) anti-correlations between sgACC and DLPFC rTMS target location predicts therapeutic 233 

outcomes22–24,45. 234 

Having identified this TEP model-based brain state signature as showing sensitivity to treatment efficacy, 235 

we next asked whether it was expressed differentially in different outcome-defined patient groups in their 236 

baseline, pre-treatment brain activity. This was indeed found to be the case (Fig. 3B), with responders 237 

showing a negative relationship between sgACC and DLPFC in their brain state loadings at baseline, 238 

whereas non-responders did not exhibit this pattern. 239 

Further investigation of the temporal dynamics of sgACC activation revealed distinct patterns between 240 

responders and non-responders (Fig. 3C). Time course analysis demonstrated significantly higher sgACC 241 

engagement patterns in responders (green) compared to non-responders (orange) following pre-iTBS 242 

baseline stimulation. These temporal differences in sgACC recruitment suggest fundamental differences in 243 

cortico-limbic circuit dynamics that may underlie treatment susceptibility. 244 
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To quantify the difference in sgACC engagement more precisely, we conducted Area Under the Curve 245 

(AUC) analysis of sgACC activation across the entire cohort (Fig. 3D). This analysis revealed significantly 246 

higher normalized engagement in responders compared to non-responders (p<0.001), with responders 247 

showing a mean normalized AUC of 35.6 ± 4.2 compared to 21.8 ± 3.8 in non-responders. The clear 248 

separation between the groups in pre-treatment sgACC activity supports its potential value as a predictive 249 

biomarker for iTBS treatment outcomes in depression. This finding aligns with the growing evidence that 250 

baseline neurophysiological states, particularly involving sgACC connectivity, may determine therapeutic 251 

responsiveness to neuromodulation interventions23.  252 

Pre-treatment values of this prefrontal-subgenual corticolimbic circuit could, for example, provide a novel 253 

biomarker for predicting treatment outcomes. 254 

 255 

256 
Fig. 3. Neural Signatures Predict Clinical Response to iTBS Treatment for Depression. (A) Brain state that 257 
maximizes the difference between responders and non-responders following iTBS treatment. Lateral and medial views 258 
highlight the dlPFC and sgACC regions showing opposite eigenvector loading directions. (B) Ratio of sgACC/DLPFC 259 
loadings within the brain state maps in A) for responders (green) and non-responders (yellow), showing a negative 260 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2025. ; https://doi.org/10.1101/2025.04.23.648963doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.23.648963
http://creativecommons.org/licenses/by-nc-nd/4.0/


relationship for responders only. (C) Normalized sgACC activation measured by GMFA at pre-iTBS baseline for 261 
responders (green) and non-responders (yellow). Time courses demonstrate higher sgACC engagement patterns for 262 
responders. (D) AUC analysis of sgACC activation for the entire cohort, demonstrating significantly higher 263 
normalized engagement in responders compared to non-responders (p<0.001), suggesting pre-treatment sgACC 264 
activity may serve as a predictive biomarker. 265 
 266 
 267 
Greater trajectory deviation and increased stability in neural dynamics of iTBS responders 268 

One of the advantages of our WBM-based approach to analyzing TMS-EEG data is that it allows us to 269 

interpret TMS-evoked potentials both in their conventional time-series representation and as geometric 270 

trajectories within the system’s phase space (Fig. 4A). The latter allows certain dynamical features such as 271 

attractor manifolds and recurrent trajectories to be visualized and characterized. We quantified the iTBS 272 

treatment-induced modifications to this attractor landscape by computing point-wise Euclidean distances 273 

in the treatment-predictive brain state between post-iTBS and pre-iTBS trajectories for responders and non-274 

responders (Fig. 4B). A group comparison using non-parametric permutation testing (10,000 iterations) 275 

revealed that responders exhibited significantly greater trajectory deviation following iTBS compared to 276 

non-responders (t = 3.24, p < 0.01), indicating a more substantial shift in the underlying dynamical regime 277 

induced by the intervention.We also examined the distance of each group's post-iTBS trajectory from the 278 

stable fixed point of the system (Fig. 4C). Responders remained significantly closer to the attractor (t = 279 

2.18, p < 0.05), suggesting increased stability and reduced susceptibility to external perturbations, such as 280 

TMS pulses. Together, these results provide evidence that iTBS induces a meaningful reconfiguration of 281 

brain state dynamics in responders, characterized by both greater reorganization (Fig. 4B) and increased 282 

attractor convergence (Fig. 4C). For dynamic visualizations of the state-space trajectories, see 283 

supplementary videos V1 and V2. 284 
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 285 
Fig. 4. iTBS selectively reorganizes attractor dynamics in treatment-responsive individuals. (A) Three-286 
dimensional neural trajectories of the treatment-predictive brain state (as identified in Fig. 3 for responders (green) 287 
and non-responders (yellow), shown pre-iTBS (left) and post-iTBS (right). Pre-treatment, both groups exhibit similar 288 
trajectories, remaining near the stable fixed point (black dot). Post-treatment, responders show a marked trajectory 289 
contraction and reduced deviation from the fixed point, suggesting greater stability and reduced sensitivity to external 290 
stimuli (e.g., TMS). (B) Point-wise Euclidean distances between post-iTBS and pre-iTBS trajectories. Responders 291 
display significantly greater trajectory shifts, indicating a more substantial reconfiguration of the treatment-predictive 292 
brain state following iTBS. (C) Point-wise Euclidean distance from the stable fixed point in the post-iTBS condition. 293 
Responders remain consistently closer to the fixed point, suggesting reduced susceptibility to external perturbation 294 
and enhanced attractor stability compared to non-responders.  295 
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DISCUSSION 296 

Our investigation offers several novel insights into the fundamental neurophysiological mechanisms 297 

underlying successful iTBS therapy in treatment-resistant depression, arrived at through a novel 298 

computational framework for personalized brain network modeling and neuroimaging data analysis35,36. In 299 

particular, the integration of empirical TMS-EEG measurements from a target clinical population with 300 

connectome-based WBM promises to become a powerful combination for studying how neuromodulation 301 

reconfigures neural circuits to alleviate depressive symptoms. This approach has allowed us to combine, in 302 

a unified picture, conventional ERP component-focused TMS-EEG analyses, anti-correlated frontolimbic 303 

brain networks, iTBS plasticity-modulated changes to excitation/inhibition balance, and dynamical systems 304 

perspectives on how this modulation alters the brain’s attractor landscape.  305 

 306 

Spectral markers of iTBS efficacy 307 

Our spectral analysis on empirical data suggests that iTBS-induced inhibition plays a key role in modulating 308 

TMS-induced low-frequency power, as demonstrated by the greater reduction in average 3–10 Hz spectral 309 

power in responders compared to non-responders, highlighting this enhanced suppression of theta/alpha 310 

activity as the key neurophysiological signature of successful iTBS intervention. Interestingly, this 311 

observed effect on empirical data was related to specific changes in synaptic connectivity within our model. 312 

The reduction in pyramidal drive to excitatory cells represents a mechanism that shifts the overall E/I 313 

balance toward a state of enhanced inhibitory control. This integrated perspective helps reconcile our 314 

findings with both the broader literature on GABA-mediated inhibition in depression and the specific 315 

synaptic changes observed in our computational model. Indeed, previous research has shown that increased 316 

inhibitory control can reduce low-frequency oscillations, a response also noted in animal studies using 317 

optogenetic and pharmacological interventions to enhance inhibitory activity46,47. In clinical TMS contexts, 318 

lower low-frequency power has been linked to treatment efficacy across subjects48,49, suggesting that 319 

enhanced inhibition may signal a positive response to iTBS. In addition, our simulations demonstrate that 320 

increasing inhibition (by reducing P→E connectivity) leads to a marked reduction in low-frequency power, 321 

aligning with empirical data and suggesting a mechanistic link between heightened inhibition and observed 322 

spectral reductions in severe MDD cases. This finding is consistent with previous modeling studies showing 323 

that oriens-lacunosum moleculare (O-LM) cells50, key inhibitory interneurons in the hippocampus, adjust 324 

their inhibitory response to different frequencies depending on channel types: cells with hyperpolarization-325 

activated cyclic nucleotide-gated (HCN) channels, which play essential roles in regulating cell excitability, 326 

are more responsive at higher theta frequencies (4–9 Hz), whereas cells lacking these channels respond 327 

more at lower theta (2–5 Hz)51. Computational models further support these findings, demonstrating that 328 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 26, 2025. ; https://doi.org/10.1101/2025.04.23.648963doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.23.648963
http://creativecommons.org/licenses/by-nc-nd/4.0/


increased inhibition can reduce low-frequency spectral power, mimicking the patterns observed in our 329 

responders52.  330 

 331 

Enhanced inhibitory plasticity tracks clinical improvement 332 

In addition to empirical data features, identifying specific biomarkers predicting the likelihood of higher or 333 

lower responsiveness to a given treatment or therapy is a key goal in WBM of non-invasive brain 334 

stimulation29,53,54. We have found, in a data-driven fashion, a significant negative linear relationship 335 

between the inhibitory feedback loop before the iTBS protocol and the clinical scores after the treatments 336 

for responders. Interestingly, when examining the pre- versus post-iTBS distribution of the inhibitory 337 

feedback loop, it was observed that the parameters increased in responders post-treatment and decreased in 338 

non-responders. Consistent with this, we also observed a post-iTBS treatment increase in inhibitory activity 339 

for responders only, as indicated by the shift in their E/I balance. These findings are consistent with previous 340 

modeling work on TBS, which highlights the critical role of pulse count in determining excitatory or 341 

inhibitory outcomes. According to the calcium-dependent plasticity (CaDP) model55, synaptic changes are 342 

governed by intracellular calcium dynamics, with different calcium levels leading to either long-term 343 

potentiation (LTP) or long-term depression (LTD). Under this model, the standard 600-pulse iTBS protocol 344 

typically produces canonical increases in excitability. However, for pulse counts lower or higher than this—345 

such as 300 or 1200 pulses—the model predicts a reversal of these effects, favoring inhibitory outcomes 346 

instead56 - consistent with prior experimental results on motor system plasticity effects with variable 347 

protocol lengths57. In our trial, participants received 1200 pulses per day and, interestingly, despite the high 348 

total pulse count, we observed post-treatment inhibition in responders. This suggests that inhibitory 349 

outcomes may still emerge under high-dose protocols, potentially due to individual differences in calcium 350 

dynamics, cortical state, or metaplasticity mechanisms. These factors, including the temporal spacing of 351 

stimulation, could modulate synaptic plasticity in complex and nonlinear ways. Altogether, this suggests 352 

that individual differences in the direction of synaptic change are influenced by both the pulse count and 353 

individual physiology, such as the phase of calcium oscillations during stimulation, cortical structure, or 354 

genetic factors affecting neuronal excitability. 355 

Taken together, these results suggest that the observed alterations in inhibitory synaptic weight, coupled 356 

with the shift in E/I balance following successful iTBS treatment, reflect a potential mechanism underlying 357 

the therapeutic efficacy of iTBS in depression. Specifically, the increase in inhibitory activity post-358 

treatment in responders may contribute to the restoration of the disrupted E/I balance associated with MDD 359 

pathology. Consistent with this, lower levels of mGluR5 (metabotropic glutamate receptor 5)58 expression 360 

in the prefrontal cortex, particularly in Brodmann's area 10, have been observed in depressed patients59, 361 

potentially contributing to disrupted E/I balance in these regions. This highlights the importance of 362 
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considering the neurophysiological mechanisms involved in E/I balance regulation when understanding and 363 

predicting individual responses to neuromodulatory interventions like iTBS. Furthermore, these findings 364 

underscore the promise of integrating computational modeling with empirical data to unravel the complex 365 

dynamics of brain stimulation therapies. The data-driven discovery in the present study of a relationship 366 

between pre-iTBS inhibitory feedback loops and clinical outcomes, coupled with post-treatment increases 367 

in inhibitory activity in responders, suggests that inhibitory synaptic changes may play a decisive role in 368 

determining treatment success. This insight could inform the development of personalized treatment 369 

strategies for depression and related neuropsychiatric conditions, where specific biomarkers, such as E/I 370 

balance, guide individualized interventions. It is important to highlight that the number of pulses required 371 

for changes in cortical excitability following iTBS may vary between individuals, depending on how TMS 372 

interacts with excitatory cortical populations and metaplastic mechanisms. Structural differences in brain 373 

convolutions or genetic variations in physiology may cause the same stimulation protocol to activate 374 

different groups of neurons across individuals. This variability, combined with the observation from prior 375 

experimental57 and modeling56 work and consistent with our own results that 1200 pulses lead to inhibition, 376 

aligns with the idea that adjusting the number of pulses or TMS intensity could minimize differences in 377 

treatment response. By identifying and understanding the physiological elements that most influence TMS 378 

response, we may be able to develop personalized models that optimize stimulation parameters. These 379 

models would allow for the tailoring of clinical treatments to an individual’s neurophysiological profile, 380 

ultimately enhancing therapeutic outcomes for depression and other neuropsychiatric disorders. In this way, 381 

combining computational models with empirical data offers a powerful approach for refining 382 

neuromodulation techniques and improving the precision of brain stimulation therapies.  383 

 384 

Emergence of therapeutically optimal brain states  385 

Furthermore, one of the key advantages of physiologically-based brain modelling is the potential for making 386 

meaningful connections between major empirical data features and the physiological constructs instantiated 387 

in the model's states. Our models revealed that a specific brain state, expressed as an eigenvector loading 388 

over brain regions and a corresponding scalp topography at the EEG channel level (Fig. 3A), was predictive 389 

of the difference in clinical outcomes between responders and non-responders. Notably, the left DLPFC 390 

and left sgACC in this brain state exhibited eigenvector loadings of opposite sign. The sgACC is a region 391 

positioned at the anterior-inferior end of the cingulum bundle, with extensive connections across prefrontal 392 

and limbic structures that have been implicated in depression60, and has been linked to clinical response 393 

across a diverse range of antidepressant treatment modalities61–63. Recent studies have shown that 394 

antidepressant outcomes were better when stimulation was delivered at sites of the DLPFC that displayed 395 

stronger negative (anticorrelated) FC with the sgACC24, a finding that has been replicated across 3 396 
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geographically distinct clinical cohorts, different populations, methodologies, scanners, stimulators, and 397 

DLPFC targeting approaches22–25. Moreover, a 60% to 70% reduction in depressive symptoms occurred 398 

when individuals were stimulated near the DLPFC site of maximal FC anticorrelation with sgACC, while 399 

those stimulated farther away showed no response or worsening of depressive symptoms23. The fact that 400 

similar topographic maps to these fMRI sgACC anticorrelation patterns were obtained from our brain 401 

network model of TMS-EEG responses in MDD patients is an intriguing and unanticipated result. Our 402 

temporal analysis of sgACC activation dynamics (Fig. 3C) showed significantly higher sgACC engagement 403 

patterns in responders compared to non-responders at baseline, prior to iTBS intervention. This finding 404 

aligns with the therapeutic mechanism of iTBS, which aims to modulate sgACC activity through 405 

stimulation of the DLPFC64,65. This suggests that patients with more robust sgACC engagement pre-iTBS 406 

may possess the necessary neurophysiological substrate for effective modulation via DLPFC stimulation. 407 

This observation supports the network-based conceptualization of iTBS efficacy, where the primary target 408 

(DLPFC) serves as an entry point to influence deeper limbic structures, particularly the sgACC, through 409 

existing functional connections. Moreover, these findings extend our understanding of the DLPFC-sgACC 410 

relationship beyond static connectivity patterns to include the dynamic temporal characteristics of sgACC 411 

recruitment. The significantly higher normalized sgACC engagement in responders suggests that pre-412 

treatment sgACC excitability may be a crucial determinant of iTBS efficacy. This could explain why 413 

stimulation of DLPFC regions with stronger negative functional connectivity to sgACC yields better 414 

clinical outcomes23,24,45 – these connections may facilitate more effective modulation of an already 415 

sensitized sgACC in treatment-responsive individuals.  416 

Our neural trajectory analysis (Fig. 4) provides compelling evidence that successful iTBS treatment alters 417 

the dynamics of cortical circuits in a way that distinguishes responders from non-responders. The three-418 

dimensional visualization of neural trajectories reveals that while both groups initially exhibit similar 419 

dynamics pre-treatment, responders show a marked trajectory contraction post-iTBS, suggesting increased 420 

stability in their attractor dynamics (Fig. 4A). This stabilization is quantified by the significantly greater 421 

trajectory shifts in responders (Fig. 4B) and their consistently closer adherence to the fixed point attractor 422 

following treatment (Fig. 4C). 423 

These findings suggest that iTBS may exert its therapeutic effects by reconfiguring the dynamical landscape 424 

of prefrontal-limbic circuits, potentially restoring a more stable, less chaotic pattern of neural activity. The 425 

greater magnitude of trajectory reorganization in responders indicates that a substantial shift in neural 426 

dynamics may be necessary for clinical improvement. Simultaneously, the closer proximity to the attractor 427 

point post-treatment suggests that effective iTBS therapy creates a more stable neural state that is less 428 

susceptible to perturbations—a characteristic that may contribute to symptom relief by dampening the 429 

excessive reactivity often observed in depressive states66,67. 430 
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This dynamical systems perspective complements our findings regarding E/I balance and sgACC-DLPFC 431 

interactions, providing a more comprehensive framework for understanding iTBS efficacy. The ability of 432 

iTBS to induce meaningful reconfiguration of attractor dynamics appears to be a critical determinant of 433 

treatment response, potentially serving as another neurophysiological signature that could guide 434 

personalized neuromodulation approaches. 435 

 436 

Limitations and future directions 437 

Despite our promising findings, several limitations should be acknowledged. First, our computational 438 

model, while detailed, necessarily represents a simplification of the complex neural dynamics underlying 439 

TMS responses. The Jansen-Rit neural mass formulation captures population-level activity but cannot 440 

resolve cellular-level mechanisms, or mechanisms extending beyond the minimal JR three-population 441 

circuit that may be relevant to iTBS effects. Second, our structural connectivity data was derived from a 442 

normative dataset rather than subject-specific tractography, which may not fully capture individual 443 

variations in anatomical connections relevant to treatment response. Third, the 1200-pulse iTBS protocol 444 

used in this study differs from the standard 600-pulse protocol commonly used in clinical settings, 445 

potentially limiting direct comparison with other clinical studies. Fourth, while our approach identified 446 

significant associations between model parameters and clinical outcomes, the causal relationship between 447 

these parameters and therapeutic effects requires further experimental validation. Fifth, the absence of a 448 

sham control condition in our study design limits our ability to distinguish between specific 449 

neurophysiological effects of iTBS and non-specific factors such as placebo effects or natural disease 450 

fluctuations. Sixth, our analyses focused primarily on prefrontal-subgenual interactions and cortical E/I 451 

balance, but other neural circuits and mechanisms not captured in our model may also contribute to 452 

treatment outcomes. Finally, although our sample size was substantial for a TMS-EEG study, larger and 453 

more diverse patient cohorts would be valuable to validate the generalizability of our findings across 454 

different TRD populations. Future studies combining longitudinal TMS-EEG with individualized 455 

connectivity measures, sham controls, and more sophisticated computational models could address these 456 

limitations and further refine our understanding of the neurophysiological mechanisms underlying iTBS 457 

efficacy 458 

In conclusion: our results, and the framework for investigating the scientific questions we are introducing 459 

here, not only enhance our understanding of the therapeutic mechanisms of iTBS, but also highlight the 460 

potential for developing neurophysiologically-informed biomarkers to guide personalized neuromodulation 461 

treatments. As computational psychiatry continues to evolve, the integration of biophysically-based 462 

modeling with multimodal neuroimaging promises to transform our approach to treatment-resistant 463 

depression, moving toward precision interventions tailored to individual neural dynamics. Future work 464 
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building on these findings could lead to optimized stimulation protocols that maximize clinical benefits by 465 

targeting specific neurophysiological mechanisms, ultimately improving outcomes for patients with this 466 

debilitating condition.  467 
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CONCLUSION 468 

Our study demonstrates that successful iTBS treatment for depression is characterized by two key 469 

neurophysiological mechanisms: enhanced inhibitory control (evidenced by greater reductions in low-470 

frequency oscillatory power and increased I→P connectivity) and specific pre-treatment frontolimbic 471 

connectivity patterns between DLPFC and sgACC. These findings advance our understanding of how 472 

neuromodulation alters brain circuit dynamics in treatment-resistant depression, suggesting potential 473 

predictive biomarkers and opening avenues for personalized TMS interventions.  474 
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METHODS 475 

The analyses conducted in the present study consist of four main components: (i) EEG preprocessing and 476 

calculation of TMS stimulation-evoked responses, (ii) construction of anatomical connectivity priors for 477 

our computational model using diffusion-weighted MRI tractography, (iii) simulation of whole-brain 478 

dynamics and stimulation-evoked responses with a connectome-based neural mass model, and (iv) fitting 479 

of the model to individual-subject scalp EEG data, statistical comparisons of the resultant estimated 480 

physiological parameters alongside other clinical variables, and further analysis of simulated activity 481 

properties. A schematic overview of the overall approach is given in Fig. 5. 482 

 483 

 484 

485 
Fig. 5. Overview of study design and methodological workflow for subject-specific connectome-based whole-486 
brain modeling of TMS evoked potentials. (A) Single-pulse TMS-EEG evoked responses and HRSD-17 depression 487 
scale were recorded before and after 30 days’ rTMS iTBS therapy. The iTBS protocol consisted of daily treatment for 488 
6 weeks (30 sessions, 5 days/week) applied over the L-DLPFC, with 1200 total pulses delivered per day. For further 489 
details on the data collection and EEG preprocessing methodology see Strafella et al. (2023)42. (B) Diffusion-weighted 490 
MRI tractography was computed from a sample of healthy young individuals from the HCP Dataset68, and then 491 
averaged to give a grand-mean anatomical connectome. (C) The Jansen-Rit model38 was embedded was embedded in 492 
each of the 200 nodes of the Schaefer atlas69 for simulating and fitting neural activity time series. The TMS-induced 493 
depolarization of the resting membrane potential was modeled by a perturbing voltage offset to the mean membrane 494 
potential of the pyramidal cell. (D) A lead field matrix was then used for moving the parcels’ time series into channel 495 
space and generating simulated TMS-EEG. (E) The goodness-of-fit (loss) was calculated between simulated and 496 
empirical TMS-EEG time series. (E) Utilizing the autodiff-computed gradient70 between the objective function and 497 
model parameters, model parameters were optimized using the ADAM algorithm71. (F) Finally, the optimized model 498 
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parameters were used to generate the fitted, simulated TMS-EEG activity, for which we report comparisons with the 499 
empirical data at both the channel and source level using conventional statistical techniques. 500 
 501 
Recruitment and trial design 502 

As part of a triple-blind randomized controlled trial conducted at the Centre for Addiction and Mental 503 

Health, University Health Network, and the University of British Columbia, 90 participants from these sites 504 

underwent TMS-EEG assessments both at baseline and after an iTBS treatment (clinicaltrials.gov identifier 505 

NCT02729792)72. Eligibility criteria included being between the ages of 18 and 59, meeting the MDD 506 

diagnosis criteria based on the Mini-International Neuropsychiatric Interview, having a baseline HRSD-17 507 

score of 18 or higher (indicating moderate-to-severe depression), maintaining stable psychotropic 508 

medications for at least 4 weeks prior to screening, and either failing to respond to one adequate 509 

antidepressant trial or being unable to tolerate two different antidepressant trials. This recruitment approach 510 

specifically targeted patients with treatment resistance, a population with significant unmet clinical need. 511 

The study was approved in accordance with the Declaration of Helsinki, and all participants provided 512 

written informed consent. For details regarding the patient recruitment, the data acquisition and the 513 

preprocessing steps, and the iTBS protocol, please refer to our paper42 and supplementary materials. All the 514 

preprocessed EEG analyses in the present work were performed using the MNE software library73 515 

(mne.tools/stable/index.html) running in Python 3.6. 516 

 517 

Overview of computational modelling approach 518 

In our study, we employed a WBM approach to analyze pre- and post-iTBS EEG data from a cohort of 90 519 

patients with MDD. This model incorporated 200 distinct cortical regions based on the Schaefer 200-parcel, 520 

7-network atlas69, connected with a set of inter-regional weights derived from the anatomical connectome. 521 

These connectivity weights were obtained by averaging diffusion MRI tractography data from 400 subjects 522 

in the Human Connectome Project (HCP) dataset68. Jansen-Rit (JR) neural mass dynamics38 at each 523 

modeled region described the process of stimulated activation and damped oscillatory responses resulting 524 

from local interactions within cortical microcircuits, with these effects propagating to regions distal to the 525 

stimulated site via the anatomical connectome. After specifying its structure and a common set of priors for 526 

all parameters, the model was fit to EEG data separately for each patient. This resulted in a set of 527 

individualized physiological and connectivity parameters, having a mechanistic causal influence on several 528 

spatial and temporal features of the brain stimulation response, which we subsequently interrogated to 529 

obtain further insight into our research questions around possible differences between patients who reported 530 

benefits from iTBS and those who did not. For details regarding the computational model and the estimation 531 

of parameters, please refer to Momi et al.35,36 and supplementary material and methods. For a graphical 532 

overview of all optimized parameter distributions, please refer to Supplementary Fig. S1. 533 
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 534 

Assessing the similarity between simulated and empirical evoked responses 535 

To further assess the goodness-of-fit the simulated waveforms arrived at after convergence of the ADAM 536 

algorithm71, Pearson correlation coefficients and corresponding p-values between empirical and model-537 

generated waveforms were computed for each subject. To control for type I error, this result was compared 538 

with a null distribution constructed from 1,000 time-wise random permutations, with a significance 539 

threshold set at p<0.05. For an overview of the goodness-of-fit between simulated and empirical TMS-EEG 540 

data, including representative butterfly plots and correlation distributions across subjects, please refer to 541 

Supplementary Fig. S2. 542 

 543 

Stimulus-induced spectral power analyses 544 

For each subject's pre-iTBS and post-iTBS recordings, we computed stimulus-induced spectral power 545 

across frequencies from 2 Hz to 50 Hz, analyzing differences attributable to iTBS treatment. A Morlet 546 

wavelet was created for each frequency of interest and convolved with hd-EEG data for each channel. We 547 

then calculated the power spectrum, applied a logarithmic transformation, and averaged these power values 548 

across trials within the defined analysis window (0–300 ms), selected to capture the primary induced 549 

response. For relative power, values were normalized to baseline power calculated over a baseline window 550 

of -300 to 0 ms.  551 

Post-iTBS versus pre-iTBS comparisons were performed for each subject using condition-wise permutation 552 

testing and cluster-based thresholding for multiple comparisons. Specifically, the permutation test 553 

converted the difference between induced and baseline windows into z-scores, based on a null distribution 554 

generated by 1,000 permutations with random window label swaps. These z-scores were thresholded at p 555 

< 0.05. An additional 1,000 iterations of the permutation test yielded a distribution of cluster sizes under 556 

the null hypothesis, identifying time-frequency clusters exceeding the 95th percentile for significance. 557 

Finally, we obtained the subject- and session-specific stimulus-induced spectral power by averaging across 558 

channels. For an overview of the group-level TMS-induced spectral power changes following iTBS 559 

treatment for responders and non-responders, please refer to Supplementary Fig. S3. To compare 560 

responders and non-responders, we performed a second-level statistical analysis. The significant z-score 561 

maps from the first-level analysis were grouped by treatment outcome, and differences between responders 562 

and non-responders were assessed using another permutation test (1,000 iterations) with cluster-based 563 

correction (Fig. 1A). This hierarchical statistical approach allowed us to identify spectro-temporal patterns 564 

that significantly differed between treatment outcome groups while controlling for multiple comparisons at 565 

both the individual and group levels. 566 
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A key advantage of physiologically-based brain modeling is its ability to link key empirical data features 567 

with physiological constructs represented by the model’s parameters. In this study, we leveraged this 568 

approach by investigating the relationship between the significant clusters in the stimulus-induced time-569 

frequency spectral power maps and the physiological parameters of the Jansen-Rit model (Fig. 1B). To 570 

conduct this analysis, we focused on significant clusters within the stimulus-induced power spectra, which 571 

represents frequency ranges where iTBS-induced changes were most prominent. For each subject, we 572 

extracted the average spectral power values from this significant region and computed the difference 573 

between post-iTBS and pre-iTBS values. This subtraction (post-iTBS minus pre-iTBS) allowed us to 574 

quantify the degree of iTBS-induced modulation within the significant spectral region. This approach 575 

enabled us to explore direct associations between spectral power changes and underlying physiological 576 

mechanisms modeled in the Jansen-Rit framework (Fig. 1C, 1D & 1E), offering insights into the neural 577 

dynamics influenced by iTBS. 578 

 579 

Evaluation of iTBS-induced changes in physiological model parameters and E/I balance 580 

We investigated the effects of iTBS treatment on several key JR model parameters associated with synaptic 581 

dynamics and connectivity (Fig. 2A & 2B). The parameters analyzed were the synaptic time constant of the 582 

excitatory population (a), the synaptic time constant of the inhibitory population (b), and the synaptic 583 

weights for pyramidal-to-excitatory (c1), excitatory-to-pyramidal (c2), pyramidal-to-inhibitory (c3) and 584 

inhibitory-to-pyramidal (c4) populations. The c1-c4 labels are the standard notation used for JR model, 585 

however as more intuitive shorthand we also use the substitutions P→E, E→P, P→I, and I→P for c1, c2, 586 

c3, and c4, respectively. As an additional summary of the physiological and dynamical state of each 587 

subject’s pre- and post-iTBS brain activity, we also explored excitatory-inhibitory (E/I) balance (Fig. 2C), 588 

defined as [c1*c2] / [c3*c4] (i.e. the ratio of the combined gains of the JR excitatory and inhibitory feedback 589 

loops), where the c parameters were first mean-normalized across all participants to ensure comparability 590 

across conditions. Specifically, for each parameter (c1-c4), we calculated the mean value across all 591 

participants and all conditions (pre-iTBS and post-iTBS), then divided each individual subject's parameter 592 

values by this global mean. This normalization ensures that all parameters contribute proportionally to the 593 

E/I ratio based on their relative values rather than being dominated by parameters with larger absolute 594 

magnitudes. Statistical analyses on estimated model parameters were performed using R-Studio Version 595 

2024.04.2+764. For each of the JR parameters and the composite E/I balance metric, we conducted a series 596 

of 2x2 repeated measures ANOVAs with “time” (two levels: pre-iTBS and post-iTBS) as a within-subject 597 

factor and “group” (two levels: responders and non-responders) as a between-subject factor. This approach 598 

allowed us to assess how treatment and time interacted to affect the specified physiological parameters. 599 
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Additionally, post-hoc paired t-tests were employed to detect changes in parameter values from pre-iTBS 600 

to post-iTBS for both responders and non-responders. 601 

 602 

Predicting iTBS clinical outcome using model-derived Hidden Brain States 603 

We employed a systematic approach to investigate the relationship between model-derived brain states and 604 

clinical response to iTBS. First, we extracted the time series of TMS-evoked activity (-100-300ms) from 605 

the optimized JR model for each of the three neuronal populations (pyramidal cells, excitatory interneurons, 606 

and inhibitory interneurons), for all 200 cortical regions. For each subject, we then concatenated these three 607 

arrays in time and performed dimensionality reduction using singular value decomposition (SVD), 608 

obtaining principal components representing dominant spatiotemporal patterns of neural activity. 609 

Using these pre-treatment components, we applied mean-centered PLS analysis74,75 to identify brain states 610 

that maximally discriminate between responders and non-responders (Fig. 3A). This multivariate statistical 611 

approach identifies latent variables (brain states) that maximize the covariance between neural activity 612 

patterns and group membership, while accounting for within-group variability. Statistical significance was 613 

assessed through permutation testing (5,000 permutations), randomly reassigning subjects to groups to 614 

establish a null distribution. The reliability of regional contributions to the discriminative brain states was 615 

evaluated using bootstrap resampling (1,000 samples). 616 

To visualize how the identified brain states differentiated between responders and non-responders, we 617 

specifically examined the relationship between loadings in the DLPFC (stimulation target) and sgACC (key 618 

region implicated in depression pathophysiology) for each subject (Fig. 3B). This approach allowed us to 619 

quantify the expression of the treatment-predictive brain state pattern at the individual subject level and 620 

identify neurophysiological signatures that may serve as biomarkers for treatment response. 621 

For temporal dynamics analysis, we extracted normalized activation time courses of the sgACC from the 622 

model for each subject (Fig. 3C). Again, these time courses represented the model-predicted neural response 623 

to stimulation, measured from -100 ms pre-stimulation to 300 ms post-stimulation. We calculated group-624 

averaged time courses for responders and non-responders separately, with shaded regions representing 625 

standard error of the mean. Statistical comparison between groups was performed using cluster-based 626 

permutation testing to identify time windows with significant differences while controlling for multiple 627 

comparisons. 628 

To quantify the overall sgACC engagement differences between groups, we calculated the AUC of 629 

normalized sgACC activation for each subject (Fig. 3D). AUC values were normalized to account for 630 

individual differences in baseline activity. Group differences in AUC values were assessed using 631 

independent samples t-tests, with significance set at p < 0.05. Violin plots were used to visualize the 632 
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distribution of AUC values in each group, with individual data points overlaid to show subject-level 633 

variability. 634 

 635 

Neural trajectory analysis in model-derived state space 636 

To visualize and quantify changes in brain dynamics induced by iTBS, we analyzed the neural trajectories 637 

in the three-dimensional state space of the JR neural mass model (Fig. 4A). For each group (responders and 638 

non-responders) and session (pre- and post-iTBS), we constructed state-space trajectories using the activity 639 

of the three neural populations in the model: pyramidal neurons, excitatory interneurons, and inhibitory 640 

interneurons. This approach allowed us to examine how the neural dynamics evolve over time in response 641 

to stimulation and how these dynamics are altered by iTBS treatment. The reconstructed trajectories were 642 

normalized using the group-averaged singular vectors and singular values. To compare dynamics across 643 

conditions, we plotted the reconstructed trajectories in 3D space and quantified their geometric properties 644 

using two complementary metrics. First, we computed point-wise Euclidean distances between post-iTBS 645 

and pre-iTBS trajectories within each group (Fig. 4B), capturing the degree of treatment-induced deviation 646 

in neural state space. Second, we computed point-wise Euclidean distances from the fixed point attractor 647 

for each post-iTBS trajectory (Fig. 4C). To calculate this fixed point, we numerically identified where the 648 

model's differential equations equal zero using each subject's fitted parameters, testing a large number of 649 

potential values and computing the Jacobian matrix to confirm stability. These distances reflect the stability 650 

of the dynamical system, where smaller distances indicate a tighter convergence toward the attractor and 651 

reduced sensitivity to perturbations (e.g., TMS pulses). 652 

Statistical differences between responders and non-responders were assessed by comparing the average 653 

Euclidean distance curves using a two-sample non-parametric permutation test (1,000 iterations), 654 

performed separately for Fig. 4B and 4C. Group-level time-series distances were summarized by their AUC, 655 

and the null distribution was generated by randomly permuting group labels to test the hypothesis that iTBS 656 

alters attractor geometry more strongly in responders than in non-responders.  657 
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